K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2017

Gọi số cần lập 

Bước 1: Xếp chữ số 0 vào 1 trong 5 vị trí từ a2 đến a6, có 5 cách xếp.

Bước 2: Xếp chữ số 1 vào 1 trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn), có 5 cách xếp.

Bước 3: Chọn 4 chữ số trong 8 chữ số {2, 3, 4, 5, 6 , 7, 8, 9}để xếp vào 4 vị trí còn lại, có  cách.

Theo quy tắc nhân có   số thỏa yêu cầu.

Chọn D.

NV
3 tháng 1 2022

a. Gọi chữ số cần lập là \(\overline{abcd}\)

TH1: \(d=0\Rightarrow\) bộ abc có \(A_9^3\) cách chọn

TH2: \(d\ne0\Rightarrow d\) có 4 cách chọn (từ 2,4,6,8)

a có 8 cách chọn (khác 0 và d), b có 8 cách chọn (khác a và d), c có 7 cách chọn (khác a,b,d)

\(\Rightarrow4.8.8.7\) số

Tổng cộng: \(A_9^3+4.8.8.7=...\)

b. Chọn 4 chữ số còn lại: có \(C_7^4\) cách

Hoán vị 3 chữ số 0,1,2: có \(3!\) cách

Coi bộ 3 chữ số này là 1 số, hoán vị với 4 chữ số còn lại: \(5!\) cách

Ta đi tính số trường hợp 0 đứng đầu:

Số 0 đứng đầu trong bộ 0,1,2: có \(2!\) cách

Đặt bộ 0,1,2 đứng đầu, xếp vị trí cho 4 chữ số còn lại: \(4!\) cách

Vậy có: \(C_7^4.\left(3!.5!-2!.4!\right)=...\) số

Gọi các số thỏa mãn đề là \(\overline{abcdef}\)  (đôi một khác nhau)

- Số 7 có thể ở cả 6 vị trí.

+ Nếu a=7 => Số cách chọn các số còn lại: 9.8.7.6.5=15120 (cách)

+ Nếu a\(\ne\) 7 => Số cách chọn các số còn lại: 8.9.8.7.6.5=120960(cách)

=> Số số tự nhiên thỏa mãn: 15120+120960=136080(số)

 

 

NV
12 tháng 9 2021

Gọi chữ số cần lập là \(\overline{abcdef}\)

TH1: có mặt chữ số 0

Chọn 4 chữ số còn lại (ngoài 2 số 0 và 7): \(C_6^4=15\) cách

Hoán vị 6 chữ số: \(6!-5!=600\) cách

\(\Rightarrow15.600=9000\) số

TH2: không có mặt chữ số 0

Chọn 5 chữ số còn lại: \(C_6^5=6\) cách

Hoán vị 6 chữ số: \(6!=720\) cách

\(\Rightarrow6.720=4320\) số

Vậy có: \(9000+4320=13320\) số thỏa mãn

5 tháng 9 2019

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:

a. Số số tự nhiên gồm 5 chữ số khác nhau luôn có mặt 1 là:

$5.A^4_6=1800$ (số)

b.

Số số tự nhiên gồm 5 chữ số khác nhau luôn có mặt 1 mà không có 7 là:

$5.A^4_5=600$ (số)

Số số tự nhiên gồm 5 chữ số khác nhau luôn có mặt 1 và 7 là:

$1800-600=1200$ (số)