Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)
\(=\frac{x^2+5x+y^2+5y+2xy-6}{x^2+6x+y^2+6y+2xy}\)
\(=\frac{\left(x+y\right)^2+5\left(x+y\right)-6}{\left(x+y\right)^2+6\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(x+y+5\right)-6}{\left(x+y\right)\left(x+y+6\right)}\)
\(=\frac{2005\times\left(2005+5\right)-6}{2005\times\left(2005+6\right)}\)
\(=\frac{2005\times2010-6}{2005\times2011}\)
\(=\frac{2004}{2005}\)
1.a) Không tồn tại\(\)
b) 1997 tại x=4
c) 4 tại x=1;y=2
d) 164 tại x=8
2.a) x>3 và x<-1
b) Không tốn tại x
\(a)\) Có \(2012=x+y\ge2\sqrt{xy}\)\(\Leftrightarrow\)\(xy\le1006^2\)
\(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{x^2+2xy+y^2}+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\)
\(\le2+\frac{4.1006^2}{2012^2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)
\(b)\) \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\ge\left[2+2012\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\ge\left(2+\frac{2012.4}{x+y}\right)^2\)
\(=\left(2+\frac{2012.4}{2012}\right)^2=36\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)
...
\(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\)
Ta co:\(x+\frac{1}{x}=\left(\frac{1}{x}+4x\right)-3x\ge2\sqrt{\frac{1}{x}\cdot4x}-3x=4-3x\left(AM-GM\right)\)
Tuong tu:\(y+\frac{1}{y}=4-3y\)
Ta co:\(A\ge\left(4-3x\right)^2+\left(4-3y\right)^2\)
\(=16-24x+9x^2+16-24y+9y^2\)
\(=32-24\left(x+y\right)+9\left(x^2+y^2\right)\)
Ap dung bat dang thuc phu:\(\frac{\left(x+y\right)^2}{4}\le\frac{x^2+y^2}{2}\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
Khi do,ta co:
\(A\ge32-24\cdot1+9\cdot\frac{1}{2}=\frac{25}{2}\)
Dau bang xay ra khi va chi khi:\(x=y=\frac{1}{2}\)
P/S:E ko chac dau ah,e ms lm quen vs no thoi
\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)
\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)
\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x
3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2
Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)
Tương tự ta có b^2-a^2=n
Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn
Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1
Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)
Từ (1) và (2)=> n chia hết cho 40
bạn vào loigiaihay rồi chọn toán lớp 8 rồi chọn đẳng thức đáng nhớ
dễ mà áp dụng hết hằng đẳng thức nếu bạn thuộc hằng đẳng thức mik chỉ làm mỗi bài 1 ý nha xong dựa vô mà làm
\(1a.\left(2x+3y\right)^2=\left(2x\right)^2+2.2x.3y+\left(3y\right)^2\)
\(=4y^2+12xy+9y^2\)
\(2a.x^2-6x+9\)
\(=x^2-2.x.3+3^2\)
\(=\left(x-3\right)^2\)
\(A=12\left(x-1\right)^2+\frac{8x}{y}=12y^2+\frac{8x}{y}=12y^2+\frac{8\left(1-y\right)}{y}\) (chú ý cái giả thiết =>x = 1-y)
\(=12y^2+\frac{8}{y}-8=12y^2+\frac{4}{y}+\frac{4}{y}-8\ge3\sqrt[3]{12y^2.\frac{4}{y}.\frac{4}{y}}-8\)
\(=3\sqrt[3]{192}-8=12\sqrt[3]{3}-8\)
Không chắc lắm.
minimize 3(2x-2)^2 +8x/y ,x>0,y>0,x+y=1 Theo Wolfram Alpha thì đáp số (giá trị Min) của t là đúng nha Khua Kít:)