Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\sqrt{x\left(x-2\right)}+\sqrt{x\left(x-5\right)}=\sqrt{x\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x-2}+\sqrt{x-5}-\sqrt{x+3}\right)=0\)
TH1: x = 0 (nhận)
TH2:
\(\sqrt{x-2}+\sqrt{x-5}-\sqrt{x+3}=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-2\right)+\left(\sqrt{x-5}-1\right)-\left(\sqrt{x+3}-3\right)=0\)
\(\Leftrightarrow\frac{x-2-4}{\sqrt{x-2}+2}+\frac{x-5-1}{\sqrt{x-5}+1}-\frac{x+3-9}{\sqrt{x+3}+3}=0\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x-2}+2}+\frac{1}{\sqrt{x-5}+1}-\frac{1}{\sqrt{x+3}+3}\right)\left(x-6\right)=0\)
Pt \(\frac{1}{\sqrt{x-2}+2}+\frac{1}{\sqrt{x-5}+1}-\frac{1}{\sqrt{x+3}+3}=0\) vô no
=> x - 6 = 0
<=> x = 6 (nhận)

\(\left(\frac{2x+1}{\sqrt{x}^3-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right).\frac{1+\sqrt{x}^3}{1+\sqrt{x}}-\sqrt{x}\)
\(=\left(\frac{2x+1-\sqrt{x}.\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\frac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\)
\(=\left(\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\left(1-\sqrt{x}+x\right)-\sqrt{x}\)
\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(1-\sqrt{x}+x\right)-\sqrt{x}\)
\(=\frac{1}{\sqrt{x}-1}.\left(1-\sqrt{x}+x\right)-\sqrt{x}\)
\(=\frac{1-\sqrt{x}+x-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\frac{1-\sqrt{x}+x-x+\sqrt{x}}{\sqrt{x}-1}=\frac{1}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{x-1}\)

Bài 1 :
a)\(\sqrt{-2\text{x}+3}\) <=> -2x+3 \(\ge\)0 <=> -2x \(\ge\) -3 <=> x\(\le\) \(\frac{3}{2}\)
b)\(\sqrt{\frac{4}{x+3}}< =>x+3>0< =>x>-3\)
Bài 2 :
a)\(\sqrt{\left(4+\sqrt{2}\right)^2}=\left|4+\sqrt{2}\right|=4+\sqrt{2}\)
b)\(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}=2\sqrt{3}+\left|2-\sqrt{3}\right|=2\sqrt{3}+2-\sqrt{3}=2+\sqrt{3}\)
c) \(\sqrt{\left(3-\sqrt{3}\right)^2}=\left|3-\sqrt{3}\right|=3-\sqrt{3}\)
Bài 3 :
a) \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
VT = \(\sqrt{5-2.2.\sqrt{5}+2^2}-\sqrt{5}\)
=\(\sqrt{\left(\sqrt{5}\right)^2-4\sqrt{5}+2^2}-\sqrt{5}\)
=\(\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)
=|\(\sqrt{5-2}\)| -\(\sqrt{5}\)
= \(\sqrt{5}-2-\sqrt{5}\)
= -2 = VP
b)\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=4\)
VT = \(\sqrt{7+2.4.\sqrt{7}+4^2}-\sqrt{7}\)
= \(\sqrt{\left(\sqrt{7}+4\right)^2}-\sqrt{7}\)
= |\(\sqrt{7}+4\)| -\(\sqrt{7}\)
=\(\sqrt{7}+4-\sqrt{7}\)
= 4 =VP
c) \(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
VT = \(16-8\sqrt{7}+7\)
= 23 - \(8\sqrt{7}\) = VP
Bài 4:
a)\(\frac{x^2-5}{x+\sqrt{5}}=\frac{x^2-\left(\sqrt{5}\right)^2}{x+\sqrt{5}}=\frac{\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)
Tương tự
Bài 5 :
a) \(\sqrt{x^2+6\text{x}+9}=3\text{x}-1\)
=> \(\sqrt{\left(x+3^2\right)}\) = 3x-1
=> x+3 = 3x-1
+) x+3 =3x-1 => x= 2
+)x+3=-3x-1 => x= \(\frac{-1}{2}\) ( không tmđk)
b)+c) Tương tự

Lời giải:
Ta có:
\(\sqrt{x+4}+2\sqrt{x+1}=\sqrt{x+20}\)
\(\Leftrightarrow (\sqrt{x+4}+2\sqrt{x+1})^2=x+20\)
\(\Leftrightarrow 5x+8+4\sqrt{(x+1)(x+4)}=x+20\)
\(\Leftrightarrow \sqrt{(x+1)(x+4)}=3-x\)
Từ đây ta suy ra \(x\leq 3\)
Bình phương hai vế tiếp tục:
\(\Rightarrow (x+1)(x+4)=(3-x)^2\)
\(\Leftrightarrow x^2+5x+4=x^2-6x+9\Leftrightarrow 11x=5\)
\(\Leftrightarrow x=\frac{5}{11}\) (thử lại thấy thỏa mãn đkđb)

Áp dụng BĐT Bu-nhi-a-cốp-xki ta được:
\(\sqrt{x-2}+\sqrt{4-x}\le\sqrt{\left(1^2+1^2\right)\left(x-2+4-x\right)}=\sqrt{2\cdot2}=2\)
Dấu "=" xảy ra khi và chỉ khi \(\sqrt{x-2}=\sqrt{4-x}\)
\(\Leftrightarrow x=3\)

\(A=\left(\frac{1}{1+\sqrt{x}}+\frac{2}{x-1}\right):\left(\frac{1}{x-\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}-1}\right)\) Đkxđ : x > 1
\(A=\left(\frac{\sqrt{x}-1}{x-1}+\frac{2}{x-1}\right):\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)
\(A=\frac{\sqrt{x}-1+2}{x-1}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{1-x}\)
\(A=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)\left(1-x\right)}\)
\(A=\frac{\sqrt{x}\left(x-1\right)}{\left(x-1\right)\left(1-x\right)}=\frac{\sqrt{x}}{1-x}\)

1)\(\sqrt{2x^2-2x+\frac{1}{2}}=\frac{1}{\sqrt{2}}\left(ĐKXĐ:x^2-x+\frac{1}{4}\ge0\right)\)
\(2x^2-2x+\frac{1}{2}=\frac{1}{2}\)
\(2x^2-2x=0\)
\(2x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
2)\(\sqrt{9x-9}-2\sqrt{\frac{x-1}{4}}=6\left(ĐKXĐ:x\ge1\right)\)
\(\sqrt{9\left(x-1\right)}-2.\frac{\sqrt{x-1}}{2}=6\)
\(3\sqrt{x-1}-\left(\sqrt{x-1}\right)=6\)
\(2\sqrt{x-1}=6\)
\(\sqrt{x-1}=3=\sqrt{9}\)
\(\Rightarrow x=10\)
4)\(1-3x+\sqrt{x^2-6x+9}=0\)
\(1-3x+\sqrt{\left(x-3\right)^2}=0\)
\(1-3x+x-3=0\)
\(x=-1\)
5)\(\frac{1}{2}\sqrt{\frac{3x+9}{4}}+\sqrt{x+3}=\sqrt{1-x}\)
\(\frac{1}{2}.\frac{\sqrt{3x+9}}{2}+\sqrt{x+3}=\sqrt{1-x}\)
\(\frac{\sqrt{3x+9}}{4}+\sqrt{x+3}=\sqrt{1-x}\)
\(\frac{\sqrt{3x+9}+4\sqrt{x+3}}{4}=\frac{4\sqrt{1-x}}{4}\)
\(\Rightarrow\sqrt{3}.\sqrt{x+3}+4\sqrt{x+3}=4\sqrt{1-x}\)
\(\Rightarrow\left(\sqrt{3}+4\right)\left(\sqrt{x+3}\right)=\sqrt{2-2x}\)
6)\(\sqrt{4x^2-9}.\left(\sqrt{x+1}+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x^2-9=0\\\sqrt{x+1}+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}4x^2=9\\\sqrt{x+1}=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=-1\end{cases}}\)