K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2021

a) Ta có \(\dfrac{IA}{IB}=\dfrac{AM}{BM}\) nên theo tính chất đường phân giác đảo, ta có IM là phân giác của tam giác AIB.

b) Đường thẳng qua I vuông góc với IM cắt đường tròn (IAB) tại K' khác I.

Ta dễ dàng nhận thấy IK' là phân giác ngoài của tam giác IAB nên K' là điểm chính giữa của cung AIB. Suy ra K' nằm trên đường trung trực của AB nên theo cách dựng, ta có \(K\equiv K'\).

Vậy A, I, K, B đồng viên.

c) Qua H kẻ đường thẳng vuông góc với HE cắt AB tại J. IK cắt AB tại G.

Ta có \(\widehat{HJE}=90^o-\widehat{HEA}=\widehat{KGB}=\dfrac{1}{2}sđ\stackrel\frown{KB}-\dfrac{1}{2}sđ\stackrel\frown{AI}=\dfrac{1}{2}sđ\stackrel\frown{AK}-\dfrac{1}{2}sđ\stackrel\frown{AI}=\dfrac{1}{2}sđ\stackrel\frown{IK}=\widehat{HFK}\).

Suy ra tứ giác HJFE nội tiếp nên \(FE\perp FJ\). Mà FE là phân giác của tam giác AFB nên FJ là phân giác ngoài. Từ đó \(\dfrac{EA}{EB}=\dfrac{JA}{JB}=k\). Mặt khác H nằm trên đường tròn đường kính EJ nên H nằm trên đường tròn Apollonius của đoạn thẳng AB theo tỉ số k. Suy ra HE là phân giác của góc AHB. (đpcm)

30 tháng 5 2021

Hình vẽ undefined

29 tháng 7 2021

đăng dễ dễ thoi idol

29 tháng 7 2021

1: Giả sử \(2\ge a\ge b\ge c\ge1\).

BĐT cần cm tương đương \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\le7\).

Ta có \(\dfrac{\left(a-b\right)\left(b-c\right)}{bc}\ge0\Leftrightarrow\dfrac{a}{c}+1\ge\dfrac{a}{b}+\dfrac{b}{c}\);

\(\dfrac{\left(a-b\right)\left(b-c\right)}{ab}\ge0\Leftrightarrow1+\dfrac{c}{a}\ge\dfrac{c}{b}+\dfrac{b}{a}\).

Từ đó ta chỉ cần chứng minh \(\dfrac{a}{c}+\dfrac{c}{a}\le\dfrac{5}{2}\Leftrightarrow\left(a-2c\right)\left(2a-c\right)\le0\).

Dễ thấy \(a\le2\le2c;2a\ge2\ge c\) nên ta có đpcm.

Đẳng thức xảy ra khi chẳng hạn a = 2; b = c = 1.

14 tháng 6 2021

Sáng nay đề chuyên Nguyễn Huệ khó lắm ạ mình làm được mỗi câu a. :(

QT
Quoc Tran Anh Le
Giáo viên
14 tháng 6 2021

Anh đã đọc :)

1 tháng 8 2021

C5:

\(A=\dfrac{a}{1+b^2c}+\dfrac{b}{1+c^2d}+\dfrac{c}{1+d^2a}+\dfrac{d}{1+a^2b}=\dfrac{a^2}{a+ab^2c}+\dfrac{b^2}{b+bc^2d}+\dfrac{c^2}{c+cd^2a}+\dfrac{d}{d+da^2b}\)

Áp dụng BĐT Cauchy Schwars dạng Engel ta có:

\(A\ge\dfrac{\left(a+b+c+d\right)^2}{a+b+c+d+ab^2c+bc^2d+cd^2a+da^2b}=\dfrac{16}{4+\left(ab+cd\right)\left(bc+ad\right)}\) 

\(\ge\dfrac{16}{4+\left(\dfrac{ab+bc+cd+ad}{4}\right)^2}=\dfrac{16}{4+\left[\dfrac{\left(a+c\right)\left(b+d\right)}{2}\right]^2}\ge\dfrac{16}{4+\left[\dfrac{\left(\dfrac{a+b+c+d}{2}\right)^2}{2}\right]^2}=2\)

Dấu ''='' xảy ra khi và chỉ khi a=b=c=d=1

 

 

 

1 tháng 8 2021

C15. 5: 

Áp dụng BĐT Cauchy: 

\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right).64}}=\dfrac{3a}{4}\) 

\(\Rightarrow\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\dfrac{3a}{4}-\dfrac{b+1}{8}-\dfrac{c+1}{8}\)

Tương tự: \(\Rightarrow\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\dfrac{3b}{4}-\dfrac{c+1}{8}-\dfrac{a+1}{8}\)\(\Rightarrow\dfrac{c^3}{\left(1+b\right)\left(1+a\right)}\ge\dfrac{3c}{4}-\dfrac{b+1}{8}-\dfrac{a+1}{8}\)

Cộng theo vế: \(VT\ge\dfrac{3}{4}\left(a+b+c\right)-\dfrac{1}{4}\left(a+b+c\right)-\dfrac{3}{4}=\dfrac{a+b+c}{2}-\dfrac{3}{4}\ge\dfrac{3\sqrt[3]{abc}}{2}-\dfrac{3}{4}=\dfrac{3}{4}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)

1 tháng 8 2021

C15.2: ( Trần Văn Khắnk - Trần Thanh Fuongzz)

Theo định lý Sin: \(\dfrac{a}{sinA}=2R\Rightarrow sinA=\dfrac{a}{2R}\Rightarrow S=\dfrac{1}{2}bc.sinA=\dfrac{abc}{4R}\Leftrightarrow abc=4SR\) (1)

Gọi G là trọng tâm của tam giác ABC, ta có: 

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\Leftrightarrow3\overrightarrow{OG}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\)

\(\Leftrightarrow9OG^2=OA^2+OB^2+OC^2+2\overrightarrow{OA}.\overrightarrow{OB}+2\overrightarrow{OB}.\overrightarrow{OC}+2\overrightarrow{OC}.\overrightarrow{OA}\)

\(\Leftrightarrow9OG^2=3R^2+2\overrightarrow{OA}.\overrightarrow{OB}+2\overrightarrow{OB}.\overrightarrow{OC}+2\overrightarrow{OC}.\overrightarrow{OA}\)

Có \(2\overrightarrow{OA}.\overrightarrow{OB}=\overrightarrow{OA}^2+\overrightarrow{OB}^2-\left(\overrightarrow{OA}-\overrightarrow{OB}\right)^2=2R^2-c^2\)

Tương tự suy ra: \(9OG^2=9R^2-\left(a^2+b^2+c^2\right)\Rightarrow a^2+b^2+c^2=9\left(R^2-OG^2\right)\) (2)

Từ (1) và (2), ta có đpcm \(\Leftrightarrow12SR\ge4S\sqrt{9\left(R^2-OG^2\right)}\)

\(\Leftrightarrow R\ge\sqrt{R^2-OG^2}\)

\(\Leftrightarrow OG^2\ge0\) ( luôn đúng )

Dấu "=" xảy ra khi và chỉ khi \(O\equiv G\) hay tam giác ABC đều.

Toán C89 :

Ta có : \(x^3+y^3+6xy\le8\)

\(\Leftrightarrow\left(x+y\right)^3-3xy.\left(x+y\right)-8+6xy\le0\)

\(\Leftrightarrow\left[\left(x+y\right)^3-8\right]-3xy.\left(x+y-2\right)\le0\)

\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2.\left(x+y\right)+4\right]-3.xy.\left(x+y-2\right)\le0\)

\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2.\left(x+y\right)+4-3xy\right]\le0\) (*)

Ta thấy : \(\left(x+y\right)^2+2.\left(x+y\right)+4-3xy\)

\(=x^2+y^2-xy+2.\left(x+y\right)+4\)

\(=\left(x-\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+2.\left(x+y\right)+4>0\forall x,y>0\)

Do đó từ (*) suy ra : \(x+y-2\le0\Leftrightarrow x+y\le2\)

Ta có : \(Q=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\ge\dfrac{4}{2}=2\)

Dấu "=" xảy ra khi \(x=y=1\)

Vậy Min \(Q=2\) khi \(x=y=1\)

Toán C88 :

Áp dụng BĐT Cô - si cho 2 số dương lần lượt ta có được :

\(\left(a+1\right)+4\ge4\sqrt{a+1}\)

\(\left(b+1\right)+4\ge4\sqrt{b+1}\)

\(\left(c+1\right)+4\ge4\sqrt{c+1}\)

Do đó : \(a+b+c+15\ge4.\left(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\right)=4.6=24\)

\(\Leftrightarrow a+b+c\ge9\)

Ta có : \(a^2+ab+b^2=\dfrac{4.\left(a^2+ab+b^2\right)}{4}=\dfrac{\left(a-b\right)^2+3.\left(a+b\right)^2}{4}\ge\dfrac{3.\left(a+b\right)^2}{4}>0\)

\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\dfrac{\sqrt{3}}{2}.\left(a+b\right)\)

Chứng minh tương tự ta có :

\(\sqrt{b^2+bc+c^2}\ge\dfrac{\sqrt{3}}{2}\left(b+c\right)\)

\(\sqrt{c^2+ca+a^2}\ge\dfrac{\sqrt{3}}{2}.\left(c+a\right)\)

Do đó : \(P\ge\dfrac{\sqrt{3}}{2}\cdot2\cdot\left(a+b+c\right)=\sqrt{3}.\left(a+b+c\right)\ge9\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

Vậy Min \(P=9\sqrt{3}\) khi \(a=b=c=3\)

17 tháng 2 2021

[Toán.C93_17.2.2021] rất hay và khó! Đó là câu em gửi anh trên Facebook hồi sáng. Và em cũng là người đầu công khai đưa ra lời giải bài này.

Xem chi tiết tại tthnew's blog: 1721

 

17 tháng 2 2021

Cho mình hỏi bạn tên gì vậy, thấy bạn ở đâu cũng có, hình như hồi xưa cũng ở bên olm.

17 tháng 2 2021

C96 trùng C94 rồi

QT
Quoc Tran Anh Le
Giáo viên
17 tháng 2 2021

Mình không để ý, cảm ơn bạn nhiều ^^

9 tháng 9 2021

woa, trông tuyệt quá

9 tháng 9 2021

thật là hay quá đi mà

9 tháng 2 2021

Bài 2.

Tìm Min.

\(M=\sum\sqrt{\left(x-3\right)^2+4^2}\ge\sqrt{\left(x+y+z-9\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)

Đẳng thức xảy ra khi $x=y=z=1.$

Tìm Max.

Ta đi chứng minh \(5-\dfrac{1}{3}x\ge\sqrt{x^2-16x+25}\)

Do $x+y+z=3;x,y,z\ge 0$ nên $x\le 3.$ Do đó \(VT\ge5-1=4>0.\) (1)

Bình phương hai vế, rút gọn, bất đẳng thức tương đương với \(\dfrac{8}{9}x\left(3-x\right)\ge0\) (hiển nhiên)

Thiết lập hai bất đẳng thức còn lại tương tự và cộng theo vế thu được Max = 14 kết hợp với số 4 ở (1) là được ngày sinh của em=))

9 tháng 2 2021

Đề bất đẳng thức đơn giản v:vv

3c) Ta sẽ chứng minh 

\(\sqrt{\dfrac{a^3}{a^3+\left(b+c\right)^3}}\ge\dfrac{a^2}{b^2+c^2}\Leftrightarrow\dfrac{a^3\left[2\left(b^2+c^2\right)a^2-\left(b+c\right)^3a+\left(b^2+c^2\right)^2\right]}{\left[a^3+\left(b+c\right)^3\right]\left(b^2+c^2\right)}\ge0\)

Hay là \(2\left[2\left(b^2+c^2\right)a^2+\left(b^2+c^2\right)^2\right]\ge (b+c)^3 a\)

Đúng vì theo AM-GM ta có:

\(VT\ge2\sqrt{2a^2\left(b^2+c^2\right)^3}\ge2\sqrt{2\left[\dfrac{\left(b+c\right)^2}{2}\right]^3}a=\left(b+c\right)^3a=VP.\)

Xong.