K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Có 2 biến cố đồng khả năng và luôn xảy ra 1 trong 2 biến cố “ Paul chọ đội Tây Ban Nha” và “ Paul chọn đội Hà Lan”. Xác suất của mỗi biến cố đó là \(\dfrac{1}{2}\)

Vậy xác suất để Paul dự đoán đội Tây Ban Nha thắng là \(\dfrac{1}{2}\)

3:

n(omega)=8

n(A)=2

=>P=2/8=1/4

4:

n(omega)=6

n(A)=1

=>P=1/6

23 tháng 6 2020

Đáp án: 66 quả bóng.

Nhận xét: Số lượng bóng chắc chắn là một số không chứa chữ số 8 ở hàng chục vì chỉ có 100 quả, nếu một hộp chứa hơn 80 quả thì số bóng còn lại sẽ không đủ chia cho 4 hộp còn lại theo yêu cầu của đề bài.

Chữ số 8 đó sẽ xuất hiện ở hàng đơn vị. Có 5 hộp nên sẽ có 5 số chứa chữ số 8 ở hàng đơn vị. Từ đó suy ra phần chục sẽ là 100 - 8x5 = 60.

Từ dữ kiện hai hộp có số bóng bằng nhau, ta suy ra một trường hợp duy nhất với số bóng lần lượt ở 5 hộp là 8; 8; 18; 28 và 38 quả bóng.

Như vậy, tổng số bóng trong hai hộp nhiều bóng nhất là 28 + 38 = 66 quả bóng.

18 tháng 3 2023

số lần lấy được bóng xanh là: 50 - 15 = 35
xác suất lấy được bóng xanh là: 35/50 = 7/10 = 70%

18 tháng 3 2023

số lần lấy được bóng xanh là: 50 - 15 = 35
xác suất lấy được bóng xanh là: 35/50 = 7/10 = 70%

21 tháng 11 2016

Quân đen 450

Quân trắng 50

Bài 6.6. Một hộp đựng 10 thẻ dùng để đặt trên bàn trong quán cà phê gồm các số 1; 2; 3; 4; 5; 6; 7; 8; 9; 10. Chọn ngẫu nhiên một thẻ trong hộp để bỏ trên bàn trong quán cà phê. Tính xác suất của mỗi biến cố sau : a) “Số xuất hiện trên thể được chọn là các số chia hết cho 2 và chia hết cho 5”. b) “Số xuất hiện trên thể được rút ra là các số chia hết cho 2 nhưng không chia hết cho 5”. c) “Số xuất hiện trên thể...
Đọc tiếp

Bài 6.6. Một hộp đựng 10 thẻ dùng để đặt trên bàn trong quán cà phê gồm các số 1; 2; 3; 4; 5; 6; 7; 8; 9; 10. Chọn ngẫu nhiên một thẻ trong hộp để bỏ trên bàn trong quán cà phê. Tính xác suất của mỗi biến cố sau : a) “Số xuất hiện trên thể được chọn là các số chia hết cho 2 và chia hết cho 5”. b) “Số xuất hiện trên thể được rút ra là các số chia hết cho 2 nhưng không chia hết cho 5”. c) “Số xuất hiện trên thể được rút ra là các số chia hết cho 3 nhưng không chia hết cho 9Bài 6.6. Một hộp đựng 10 thẻ dùng để đặt trên bàn trong quán cà phê gồm các số 1; 2; 3; 4; 5; 6; 7; 8; 9; 10. Chọn ngẫu nhiên một thẻ trong hộp để bỏ trên bàn trong quán cà phê. Tính xác suất của mỗi biến cố sau : a) “Số xuất hiện trên thể được chọn là các số chia hết cho 2 và chia hết cho 5”. b) “Số xuất hiện trên thể được rút ra là các số chia hết cho 2 nhưng không chia hết cho 5”. c) “Số xuất hiện trên thể được rút ra là các số chia hết cho 3 nhưng không chia hết cho 9

1

a: \(\Omega=\left\{1;2;3;4;5;6;7;8;9;10\right\}\)

=>\(n\left(\Omega\right)=10\)

Gọi A là biến cố "Số xuất hiện trên thẻ được chọn là số chia hết cho 2 và chia hết cho 5"

Số vừa chia hết cho 2 và vừa chia hết cho 5 trong các số 1;2;3;...;10 là 10

=>A={10}

=>n(A)=1

\(P_A=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{1}{10}\)

b: Gọi B là biến cố "Số xuất hiện trên thẻ là số chia hết cho 2 và không chia hết cho 5"

Các số chia hết cho 2 và không chia hết cho 5 trong tập hợp \(\Omega\) là 2;4;6;8

=>B={2;4;6;8}

=>n(B)=4

=>\(P\left(B\right)=\dfrac{4}{10}=\dfrac{2}{5}\)

c: Gọi C là biến cố "Số xuất hiện trên thẻ là số chia hết cho 3 và không chia hết cho 9"

Các số chia hết cho 3 nhưng không chia hết cho 9 trong tập hợp \(\Omega\) là 3;6

=>C={3;6}

=>n(C)=2

=>\(P\left(C\right)=\dfrac{2}{10}=\dfrac{1}{5}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

- A là biến cố ngẫu nhiên vì có thể lần lấy thứ 2 sẽ là quả bóng màu xanh, đỏ hoặc vàng

- B là biến cố ngẫu nhiên vì có thể lần thứ 2 sẽ lấy được quả giống màu thứ nhất hoặc khác màu

- C là biến cố không thể vì trong hộp không có bóng màu hồng

- D là biến cố ngẫu nhiên vì trong 2 lần lấy có thể chỉ lấy được các màu đỏ và vàng thay vì màu xanh

a: n(A)=11

P(A)=11/11=1

b: n(B)=0

=>P(B)=0