Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu \(S_1-S_2=\frac{a^2-b^2}{a+b}+\frac{b^2-c^2}{b+c}+\frac{c^2-a^2}{c+a}\)
\(=\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{\left(b-c\right)\left(b+c\right)}{b+c}+\frac{\left(c-a\right)\left(c+a\right)}{c+a}\)
\(=a-b+b-c+c-a\)
\(=0\)
\(\Rightarrow S_1=S_2\)
+) Áp dụng bđt AM-GM ta có:
\(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{a^2}{a+b}.\frac{a+b}{4}}=a\)
\(\frac{b^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{b^2}{b+c}.\frac{b+c}{4}}=b\)
\(\frac{c^2}{c+a}+\frac{c+a}{4}\ge2\sqrt{\frac{c^2}{c+a}.\frac{c+a}{4}}=c\)
Cộng theo vế các đẳng thức trên ta được:
\(S_1+\frac{a+b+c}{2}\ge a+b+c\)
\(\Rightarrow S_1\ge\frac{a+b+c}{2}\left(đpcm\right)\)
A B C D M N P H K
Từ điểm B , kể thêm đoạn thẳng vuông góc với MN, AC tại H và K .
a. +, Xét ΔABC có :
M là trung điểm của AB ( MA = MB )
N là trung điểm của BC ( BN = CN )
=> MN là đường trung bình của ΔABC
=> MN = 1 / 2 AC , MN // AC ( TC của đường trung bình )
+, Xét ΔBMN và ΔBAC có :
MN // BC ( CMT )
=> ΔBMN ~ ΔBAC
=>MN/AC =MB/AB =NB/ BC ( TC Δ DD)
Mà MN / AC = 1 / 2 , tỉ lệ đồng dạng bằng tỉ lệ đường cao của 2 tam giác .
=> MN / AC = BH / BK = 1 / 2
Ta có : SMBN = 1 / 2 . BH . MN
SABC = 1 / 2 . BK . AC
=> SMBN / SABC = 1/2.BH.MN/1/2.BK.AC
=> SMBN / SABC = BH . MN / BK . AC
Mà BK = 2BH , AC = 2MN
=> SMBN / SABC = BH . MN / 2BH . 2 MN
=> SMBN /SABC=1.(BH .MN)/4.(BH .MN)
=> SMBN / SABC = 1 / 4
hay SBMN = 1/4 . SABC .
b.
Gọi M là trung điểm BC
+) vecto AI=vecto IG=vecto GM
+) vecto AI=1/3vecto AM=1/3(vecto CM-vecto CA)=2/3vecto CB-1/3vecto CA
+) vecto AK=1/5vecto AB=1/5vecto CB-1/5vectoCA
+) vecto CK=vecto CA+vecto AK=vecto CA+1/5vecto AB
=vecto CA+1/5vecto CB-1/5vecto CA=1/5vecto CB+4/5vecto CA
+)vecto CI=vecto CA+vecto AI= vecto CA+1/3vecto AM
=vecto CA+1/3vecto AC+1/6vecto CB=2/3vecto CA+1/6vecto CB
b/
+) vecto CI =2/3vecto CA+1/6vecto CB=5(4/30vecto CA+1/30vecto CB)
+) vecto CK=6(4/30vecto CA+1/30vecto CB)
do đó 1/5vecto CI=1/6vecto CK
Nên C,I,K thẳng hàng.
Đặt \(\hept{1\begin{cases}\frac{a_2}{a_1}=x\\\frac{b_2}{b_1}=y\\\frac{c_2}{c_1}=z\end{cases}}\)
Thì bài toán thành
x + y + z = 1(1); \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\left(2\right)\)
Chứng minh x2 + y2 + z2 = 1
Từ (2) ta có \(\frac{xy+yz+zx}{xyz}=0\Leftrightarrow xy+yz+zx=0\)
Từ (1) ta có
(x + y + z)2 = 1
<=> x2 + y2 + z2 + 2(xy + yz + zx) = 0
<=> x2 + y2 + z2 = 1
sai đầu bài rồi nhé. Cái này là vô lý. xem lại đầu bài nhé
đề sai rồi, mk không chứng minh
xét theo hình vẽ thì có có thể bé hơn 3 đến 4 lần