Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(\frac{\sqrt{3}+\sqrt{5}}{(\sqrt{5}+1)(\sqrt{3}-1)}=\frac{(\sqrt{3}+\sqrt{5})(\sqrt{5}-1)(\sqrt{3}+1)}{(\sqrt{5}+1)(\sqrt{5}-1)(\sqrt{3}-1)(\sqrt{3}+1)}\)
\(=\frac{(\sqrt{3}+\sqrt{5})(\sqrt{5}-1)(\sqrt{3}+1)}{(5-1)(3-1)}=\frac{(\sqrt{3}+\sqrt{5})(\sqrt{5}-1)(\sqrt{3}+1)}{8}\)
\(\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}\)
\(=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\left(\sqrt{2}+\sqrt{3}\right)^2-\left(\sqrt{5}\right)^2}=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{2+2\sqrt{2\cdot3}+3-5}=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{5+2\sqrt{6}-5}=\frac{\sqrt{6}\cdot\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}{\sqrt{6}\cdot2\sqrt{6}}=\frac{2\sqrt{3}+3\sqrt{2}-\sqrt{30}}{12}\)
Ta có \(\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\) = \(\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{5+2\sqrt{6}-5}\)
= \(\frac{\sqrt{6}\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}{12}\)
\(A=\frac{1}{\sqrt{5}-\sqrt{3}+2}\)
\(A=\frac{1}{\left(\sqrt{5}+2\right)+\sqrt{3}}\)
\(A=\frac{1\left(\left(\sqrt{5}+2\right)-\sqrt{3}\right)}{\left(\left(\sqrt{5}+2\right)+3\right)\left(\left(\sqrt{5}+2\right)-\sqrt{3}\right)}\)
\(A=\frac{\sqrt{5}+2-\sqrt{3}}{\left(\sqrt{5}+2\right)^2-3}\)
\(A=\frac{\sqrt{5}+2-\sqrt{3}}{6-4\sqrt{5}}\)
\(A=\frac{\left(\sqrt{5}+2-\sqrt{3}\right)\left(6+4\sqrt{5}\right)}{\left(6-4\sqrt{5}\right)\left(6+4\sqrt{5}\right)}\)
\(A=\frac{6\sqrt{5}+20+12+8\sqrt{5}-6\sqrt{3}-4\sqrt{15}}{36-16\cdot5}\)
\(A=\frac{14\sqrt{5}+32-6\sqrt{3}-4\sqrt{15}}{-44}\)
\(A=\frac{6\sqrt{3}+4\sqrt{15}-14\sqrt{5}-32}{44}\)
Nhớ k cho mik đó nha ....... rồi kb lun ahihi
có công thức rồi mà cậu,bài này dễ,cậu thử áp dụng công thức xemm..
a/ \(\frac{1}{2+\sqrt{3}}-\frac{1}{2-\sqrt{3}}+5\sqrt{3}\)
\(=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}-\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+5\sqrt{3}\)
\(=\frac{2-\sqrt{3}}{4-3}-\frac{2+\sqrt{3}}{4-3}+5\sqrt{3}\)
\(=2-\sqrt{3}-2-\sqrt{3}+5\sqrt{3}\)
\(=3\sqrt{3}\)
Vậy..
b/ \(\frac{1}{\sqrt{5}+2}-\sqrt{9+4\sqrt{5}}\)
\(=\frac{1}{\sqrt{5}+2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)
\(=\frac{1}{\sqrt{5}+2}-\left|\sqrt{5}+2\right|\)
\(=\frac{\sqrt{5}-2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}-\sqrt{5}-2\)
\(=\sqrt{5}-2-\sqrt{5}-2\)
\(=-4\)
Vậy..
Bài 1:
a.
\(\frac{1}{2\sqrt{2}-3\sqrt{3}}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2}-3\sqrt{3})(2\sqrt{2}+3\sqrt{3})}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2})^2-(3\sqrt{3})^2}=\frac{2\sqrt{2}+3\sqrt{3}}{-19}\)
b.
\(=\sqrt{\frac{(3-\sqrt{5})^2}{(3-\sqrt{5})(3+\sqrt{5})}}=\sqrt{\frac{(3-\sqrt{5})^2}{3^2-5}}=\sqrt{\frac{(3-\sqrt{5})^2}{4}}=\sqrt{(\frac{3-\sqrt{5}}{2})^2}=|\frac{3-\sqrt{5}}{2}|=\frac{3-\sqrt{5}}{2}\)
Bài 2.
a.
\(=\frac{\sqrt{8}(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}=\frac{2\sqrt{2}(\sqrt{5}+\sqrt{3})}{5-3}=\sqrt{2}(\sqrt{5}+\sqrt{3})=\sqrt{10}+\sqrt{6}\)
b.
\(=\sqrt{\frac{(2-\sqrt{3})^2}{(2-\sqrt{3})(2+\sqrt{3})}}=\sqrt{\frac{(2-\sqrt{3})^2}{2^2-3}}=\sqrt{(2-\sqrt{3})^2}=|2-\sqrt{3}|=2-\sqrt{3}\)
\(\frac{1}{\sqrt{8}-\sqrt{3}-\sqrt{5}}=\frac{1}{\sqrt{8}-\left(\sqrt{3}+\sqrt{5}\right)}=\frac{\sqrt{8}+\left(\sqrt{3}+\sqrt{5}\right)}{8-\left(\sqrt{3}+\sqrt{5}\right)^2}\)
\(=\frac{\sqrt{8}+\sqrt{3}+\sqrt{5}}{8-\left(3+2\sqrt{3}\sqrt{5}+5\right)}=\frac{\sqrt{8}+\sqrt{3}+\sqrt{5}}{8-8-2\sqrt{15}}\)
\(=\frac{\sqrt{8}+\sqrt{3}+\sqrt{5}}{-2\sqrt{15}}=\frac{\sqrt{15}.\left(\sqrt{8}+\sqrt{3}+\sqrt{5}\right)}{-2.15}=\frac{2\sqrt{30}+3\sqrt{5}+5\sqrt{3}}{-30}\)