K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

a. \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)

b. \(\dfrac{26}{5-2\sqrt{3}}=\dfrac{26\left(5+2\sqrt{3}\right)}{\left(5+2\sqrt{3}\right)\left(5-2\sqrt{3}\right)}=\dfrac{26\left(5+2\sqrt{3}\right)}{13}=2\left(5+2\sqrt{3}\right)=10+4\sqrt{3}\)

c. \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}=\dfrac{\left(2\sqrt{10}-5\right)\left(4+\sqrt{10}\right)}{\left(4-\sqrt{10}\right)\left(4+\sqrt{10}\right)}=\dfrac{3\sqrt{10}}{6}=\dfrac{\sqrt{10}}{2}\)

d. \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}=\dfrac{\left(9-2\sqrt{3}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{\left(3\sqrt{6}-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}=\dfrac{23\sqrt{6}}{46}=\dfrac{\sqrt{6}}{2}\)

12 tháng 8 2018

mấy bài dạng này bn nên sử dụng cách nhân liên hợp hoặc phân tích đa thức thành nhân tử nha . mk lm 1 bài còn lại thì bn tự lm cho quen nha :)

a) ta có : \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}-\sqrt{7}}=\dfrac{\left(\sqrt{6}+\sqrt{14}\right)\left(2\sqrt{3}+\sqrt{7}\right)}{\left(2\sqrt{3}-\sqrt{7}\right)\left(2\sqrt{3}+\sqrt{7}\right)}\)

\(=\dfrac{6\sqrt{2}+\sqrt{42}+2\sqrt{42}+7\sqrt{2}}{\left(2\sqrt{3}\right)^2-\left(\sqrt{7}\right)^2}=\dfrac{13\sqrt{2}+3\sqrt{42}}{5}\)

gợi ý : b) phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức số \(6\)

c) nhân liên hợp 2 lần nha .

12 tháng 8 2018

a) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}-\sqrt{7}}\)

=\(\dfrac{\left(\sqrt{6}+\sqrt{14}\right)\left(2\sqrt{3}+\sqrt{7}\right)}{\left(2\sqrt{3}-\sqrt{7}\right).\left(2\sqrt{3}+\sqrt{7}\right)}\)

=\(\dfrac{\left(\sqrt{6}+\sqrt{14}\right).\left(2\sqrt{3}+\sqrt{7}\right)}{12-7}\)

=\(\dfrac{2\sqrt{18}+\sqrt{42}+2\sqrt{42}+\sqrt{98}}{5}\)

=\(\dfrac{6\sqrt{2}+\sqrt{42}+2\sqrt{42}+7\sqrt{2}}{5}\)

=\(\dfrac{3\sqrt{42}+13\sqrt{2}}{5}\)

b) \(\dfrac{5\sqrt{5}+3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)

=\(\dfrac{\left(5\sqrt{5}+3\sqrt{3}\right).\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right).\left(\sqrt{5}-\sqrt{3}\right)}\)

=\(\dfrac{25-5\sqrt{15}+3\sqrt{15}-9}{2}\)

=\(\dfrac{16-2\sqrt{15}}{2}=8-\sqrt{15}\)

Câu c mk chưa làm đượcbucminh

bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được. a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\) d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\) bài 2: tính giá trị các biểu thức sau: a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b)...
Đọc tiếp

bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được.

a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\)

d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\)

bài 2: tính giá trị các biểu thức sau:

a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b) \(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}-\sqrt{5}}\)

c) \(\sqrt{12}+\sqrt{48}-\sqrt{(\sqrt{75}-\sqrt{108)}^2}\)

bài 3: thực hiện phép tính.

a) \(\sqrt{(3-2\sqrt{2})^2}+\sqrt{(3+2\sqrt{2})^2}\) b)\(\sqrt{(5-2\sqrt{6})^2}-\sqrt{(5+2\sqrt{6})^2}\)

c) \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\) d) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

bài 4: thực hiện các phép tính sau.

a) \(\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\) b) \(2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}\dfrac{2}{5}\sqrt{\dfrac{75}{16}}\)

c) \(\sqrt{8}+\sqrt{72}+\sqrt{98}-5\sqrt{128}\) d) \(2\sqrt{\dfrac{9}{8}}-\sqrt{\dfrac{49}{2}}+\sqrt{\dfrac{25}{18}}\)

bài 5: rút ngọn biểu thức với giả thiết các biểu thức chữ đều có nghĩa.

a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}(x>0;y>0)\)

b) \(\dfrac{a+\sqrt{ab}}{b+\sqrt{ab}}(a;b\ge0)\)

bài 6: giải các phương trình sau:\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

2
7 tháng 8 2018

mn ơi giải giúp mik bài não cũng đc a

mình cảm ơn mn nhiều ạ =))

7 tháng 8 2018

tớ nghĩ tớ giải đc 1-2 bài gì đó nhưng tớ ko bít bấm can lm sao giải cho cậu đc

bài 2: 

a: \(\dfrac{25}{5-2\sqrt{3}}=\dfrac{125+10\sqrt{3}}{13}\)

b: \(\dfrac{8}{\sqrt{5}+2}=8\sqrt{5}-32\)

c: \(\dfrac{6}{2\sqrt{3}-\sqrt{7}}=\dfrac{12\sqrt{3}+6\sqrt{7}}{5}\)

d: \(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}=\dfrac{\sqrt{6}}{2}\)

 

Bài 50:

\(\dfrac{5}{\sqrt{10}}=\dfrac{5\sqrt{10}}{10}=\dfrac{\sqrt{10}}{2}\)

\(\dfrac{5}{2\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)

\(\dfrac{1}{3\sqrt{20}}=\dfrac{1}{6\sqrt{5}}=\dfrac{\sqrt{5}}{30}\)

\(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)

27 tháng 6 2017

c) \(\dfrac{3\sqrt{3}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}=\dfrac{3\sqrt{3}}{\left(\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{5}\right)}=\dfrac{3\sqrt{3}\left(\left(\sqrt{2}+\sqrt{3}\right)-\sqrt{5}\right)}{\left(\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{5}\right)\left(\left(\sqrt{2}+\sqrt{3}\right)-\sqrt{5}\right)}\) = \(\dfrac{3\sqrt{6}+9-3\sqrt{15}}{\left(\sqrt{2}+\sqrt{3}\right)^2-5}\) = \(\dfrac{3\sqrt{6}+9-3\sqrt{15}}{2+2\sqrt{6}+3-5}=\dfrac{3\sqrt{6}+9-3\sqrt{15}}{2\sqrt{6}}\)

= \(\dfrac{\left(3\sqrt{6}+9-3\sqrt{15}\right)\sqrt{6}}{2\sqrt{6}.\sqrt{6}}\) = \(\dfrac{18+9\sqrt{6}-9\sqrt{10}}{12}\)

= \(\dfrac{3\left(6+3\sqrt{6}-3\sqrt{10}\right)}{3.4}=\dfrac{6+3\sqrt{6}-3\sqrt{10}}{4}\)

d) \(\dfrac{4}{1+\sqrt{2}+\sqrt{3}}=\dfrac{4}{\left(\left(1+\sqrt{2}\right)+\sqrt{3}\right)}=\dfrac{4\left(\left(1+\sqrt{2}\right)-\sqrt{3}\right)}{\left(\left(1+\sqrt{2}\right)+\sqrt{3}\right)\left(\left(1+\sqrt{2}\right)-\sqrt{3}\right)}\)

= \(\dfrac{4+4\sqrt{2}-4\sqrt{3}}{\left(1+\sqrt{2}\right)^2-3}=\dfrac{4+4\sqrt{2}-4\sqrt{3}}{1+2\sqrt{2}+1-3}\) = \(\dfrac{4+4\sqrt{2}-4\sqrt{3}}{2\sqrt{2}}\)

\(\dfrac{\left(4+4\sqrt{2}-4\sqrt{3}\right)\sqrt{2}}{2\sqrt{2}\sqrt{2}}=\dfrac{4\sqrt{2}+8-4\sqrt{6}}{4}\) = \(\dfrac{4\left(\sqrt{2}+4-\sqrt{6}\right)}{4}=\sqrt{2}+4-\sqrt{6}\)

27 tháng 6 2017

câu a thôi nha

câu b:\(\dfrac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}=\dfrac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}\)

\(=\dfrac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{2\sqrt{6}}=\dfrac{\sqrt{6}\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}{12}=\dfrac{3\sqrt{2}+2\sqrt{3}-\sqrt{30}}{12}\)

câu c,d tương tự câu b thôi

bản chất lười =))

7 tháng 9 2017

câu e mình viết sai đề, mk sửa lại nhé , với mình bổ sung câu f

e) \(\dfrac{2}{\sqrt[3]{4}+\sqrt[3]{5}}\)

f) \(\dfrac{1}{2-\dfrac{\sqrt[3]{3}}{2}}\)

10 tháng 4 2017

Nhat Linh bị nhầm câu cuối:

\(\dfrac{y+b\sqrt{y}}{b.\sqrt{y}}=\dfrac{y\sqrt{y}+b.y}{b.y}=\dfrac{\sqrt{y}+b}{b}.\)

a: \(A=\dfrac{\sqrt{6}}{3}+\sqrt{6}-\sqrt{6}=\dfrac{\sqrt{6}}{3}\)

b: \(B=\dfrac{3}{5}\sqrt{10}+\dfrac{1}{2}\sqrt{10}-2\sqrt{10}=-\dfrac{9}{10}\sqrt{10}\)

c: \(C=\dfrac{\sqrt{21}}{7}\cdot\sqrt{a}-2\cdot\dfrac{\sqrt{21}}{3}\cdot\sqrt{a}+\sqrt{21}\cdot\sqrt{a}\)

\(=\dfrac{10\sqrt{21a}}{21}\)

15 tháng 9 2018

\(\dfrac{\sqrt{5}-1}{\sqrt{5}+1}=\dfrac{\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}=\dfrac{5-2\sqrt{5}+1}{5-1}=\dfrac{2\left(3-\sqrt{5}\right)}{4}=\dfrac{3-\sqrt{5}}{2}\)

b: \(\dfrac{37}{7+2\sqrt{3}}=7-2\sqrt{3}\)

c:\(=\dfrac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}\left(2\sqrt{2}-\sqrt{5}\right)}=\sqrt{\dfrac{5}{2}}=\dfrac{\sqrt{10}}{2}\)

d: \(=\dfrac{\left(1+\sqrt{a}\right)\cdot\left(2+\sqrt{a}\right)}{4-a}\)