\(\dfrac{3}{\sqrt{3}+1}\)

\(\dfrac{2}{...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2018

a. \(\dfrac{3}{\sqrt{3}+1}=\dfrac{3\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\dfrac{3\left(\sqrt{3}-1\right)}{2}\)

b. \(\dfrac{2}{\sqrt{3}-1}=\dfrac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\dfrac{2\left(\sqrt{3}+1\right)}{2}=\sqrt{3}+1\)

c. \(\dfrac{2+\sqrt{3}}{2-\sqrt{3}}=\dfrac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\dfrac{\left(2+\sqrt{3}\right)^2}{1}=\left(2+\sqrt{3}\right)^2=7+4\sqrt{3}\)d. \(\dfrac{b}{3+\sqrt{b}}=\dfrac{b\left(3-\sqrt{b}\right)}{\left(3+\sqrt{b}\right)\left(3-\sqrt{b}\right)}=\dfrac{b\left(3-\sqrt{b}\right)}{9-b}\)

11 tháng 8 2018

a)\(\dfrac{3}{\sqrt{3}+1}=\dfrac{3.\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\dfrac{3\left(\sqrt{3}-1\right)}{2}\)

b)\(\dfrac{2}{\sqrt{3}-1}=\dfrac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\dfrac{2\left(\sqrt{3}+1\right)}{2}=\sqrt{3}+1\)

Bài 50:

\(\dfrac{5}{\sqrt{10}}=\dfrac{5\sqrt{10}}{10}=\dfrac{\sqrt{10}}{2}\)

\(\dfrac{5}{2\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)

\(\dfrac{1}{3\sqrt{20}}=\dfrac{1}{6\sqrt{5}}=\dfrac{\sqrt{5}}{30}\)

\(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)

bài 2: 

a: \(\dfrac{25}{5-2\sqrt{3}}=\dfrac{125+10\sqrt{3}}{13}\)

b: \(\dfrac{8}{\sqrt{5}+2}=8\sqrt{5}-32\)

c: \(\dfrac{6}{2\sqrt{3}-\sqrt{7}}=\dfrac{12\sqrt{3}+6\sqrt{7}}{5}\)

d: \(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}=\dfrac{\sqrt{6}}{2}\)

 

AH
Akai Haruma
Giáo viên
4 tháng 10 2018

Lời giải:

a) \(\frac{1}{1-\sqrt[3]{5}}=\frac{1+\sqrt[3]{5}+\sqrt[3]{5^2}}{(1-\sqrt[3]{5})(1+\sqrt[3]{5}+\sqrt[3]{25})}\) \(=\frac{1+\sqrt[3]{5}+\sqrt[3]{25}}{1^3-5}=\frac{1+\sqrt[3]{5}+\sqrt[3]{25}}{-4}\)

b)

\(\frac{1}{\sqrt[3]{2}+\sqrt[3]{3}}=\frac{\sqrt[3]{2^2}-\sqrt[3]{6}+\sqrt[3]{3^2}}{(\sqrt[3]{2}+\sqrt[3]{3})(\sqrt[3]{2^2}-\sqrt[3]{6}+\sqrt[3]{3^2})}\) \(=\frac{\sqrt[3]{4}-\sqrt[3]{6}+\sqrt[3]{9}}{2+3}=\frac{\sqrt[3]{4}-\sqrt[3]{6}+\sqrt[3]{9}}{5}\)

c)

\(\frac{1}{1+\sqrt[3]{2}+\sqrt[3]{4}}=\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2}-1)(\sqrt[3]{2^2}+\sqrt[3]{2}+1)}=\frac{\sqrt[3]{2}-1}{2-1}=\sqrt[3]{2}-1\)

27 tháng 6 2017

c) \(\dfrac{3\sqrt{3}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}=\dfrac{3\sqrt{3}}{\left(\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{5}\right)}=\dfrac{3\sqrt{3}\left(\left(\sqrt{2}+\sqrt{3}\right)-\sqrt{5}\right)}{\left(\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{5}\right)\left(\left(\sqrt{2}+\sqrt{3}\right)-\sqrt{5}\right)}\) = \(\dfrac{3\sqrt{6}+9-3\sqrt{15}}{\left(\sqrt{2}+\sqrt{3}\right)^2-5}\) = \(\dfrac{3\sqrt{6}+9-3\sqrt{15}}{2+2\sqrt{6}+3-5}=\dfrac{3\sqrt{6}+9-3\sqrt{15}}{2\sqrt{6}}\)

= \(\dfrac{\left(3\sqrt{6}+9-3\sqrt{15}\right)\sqrt{6}}{2\sqrt{6}.\sqrt{6}}\) = \(\dfrac{18+9\sqrt{6}-9\sqrt{10}}{12}\)

= \(\dfrac{3\left(6+3\sqrt{6}-3\sqrt{10}\right)}{3.4}=\dfrac{6+3\sqrt{6}-3\sqrt{10}}{4}\)

d) \(\dfrac{4}{1+\sqrt{2}+\sqrt{3}}=\dfrac{4}{\left(\left(1+\sqrt{2}\right)+\sqrt{3}\right)}=\dfrac{4\left(\left(1+\sqrt{2}\right)-\sqrt{3}\right)}{\left(\left(1+\sqrt{2}\right)+\sqrt{3}\right)\left(\left(1+\sqrt{2}\right)-\sqrt{3}\right)}\)

= \(\dfrac{4+4\sqrt{2}-4\sqrt{3}}{\left(1+\sqrt{2}\right)^2-3}=\dfrac{4+4\sqrt{2}-4\sqrt{3}}{1+2\sqrt{2}+1-3}\) = \(\dfrac{4+4\sqrt{2}-4\sqrt{3}}{2\sqrt{2}}\)

\(\dfrac{\left(4+4\sqrt{2}-4\sqrt{3}\right)\sqrt{2}}{2\sqrt{2}\sqrt{2}}=\dfrac{4\sqrt{2}+8-4\sqrt{6}}{4}\) = \(\dfrac{4\left(\sqrt{2}+4-\sqrt{6}\right)}{4}=\sqrt{2}+4-\sqrt{6}\)

27 tháng 6 2017

câu a thôi nha

câu b:\(\dfrac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}=\dfrac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}\)

\(=\dfrac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{2\sqrt{6}}=\dfrac{\sqrt{6}\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}{12}=\dfrac{3\sqrt{2}+2\sqrt{3}-\sqrt{30}}{12}\)

câu c,d tương tự câu b thôi

bản chất lười =))

a: \(\dfrac{5}{3\sqrt{8}}=\dfrac{5\sqrt{2}}{3\cdot4}=\dfrac{5\sqrt{2}}{12}\)

\(\dfrac{2}{\sqrt{b}}=\dfrac{2\sqrt{b}}{b}\)

b: \(\dfrac{5}{5-2\sqrt{3}}=\dfrac{25+10\sqrt{3}}{13}\)

\(\dfrac{2a}{1-\sqrt{a}}=\dfrac{2a\left(1+\sqrt{a}\right)}{1-a}\)

c: \(\dfrac{4}{\sqrt{7}+\sqrt{5}}=\dfrac{4\left(\sqrt{7}-\sqrt{5}\right)}{2}=2\sqrt{7}-2\sqrt{5}\)

\(\dfrac{6a}{2\sqrt{a}-\sqrt{b}}=\dfrac{6a\left(2\sqrt{a}+\sqrt{b}\right)}{4a-b}\)

26 tháng 8 2017

bài 1) a) \(xy\sqrt{\dfrac{x}{y}}=x\sqrt{y}\sqrt{y}\dfrac{\sqrt{x}}{\sqrt{y}}=x\sqrt{x}\sqrt{y}=\left(\sqrt{x}\right)^3\sqrt{y}\)

b) \(\sqrt{\dfrac{5a^3}{49b}}=\dfrac{\sqrt{5a^3}}{\sqrt{49b}}=\dfrac{\sqrt{5a^3}}{7\sqrt{b}}=\dfrac{\sqrt{5a^3}.\sqrt{b}}{7\sqrt{b}.\sqrt{b}}=\dfrac{\sqrt{5a^3b}}{7b}\)

bài 2) a) \(\dfrac{\sqrt{3}-3}{1-\sqrt{3}}=\dfrac{\sqrt{3}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=\sqrt{3}\)

b) \(\dfrac{5-\sqrt{15}}{\sqrt{3}-\sqrt{5}}=\dfrac{-\sqrt{5}\left(\sqrt{3}-\sqrt{5}\right)}{\sqrt{3}-\sqrt{5}}=-\sqrt{5}\)

c) \(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)

Bài 3:

a: \(=\dfrac{3+2\sqrt{2}}{1}-\dfrac{\sqrt{2}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}\)

\(=3+2\sqrt{2}-\sqrt{2}=3+\sqrt{2}\)

b: \(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\left(\sqrt{ab}-b\right)}{\left(a+\sqrt{b}\right)^2}\)

\(=\dfrac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=\dfrac{b}{a+\sqrt{b}}\)

c: \(=x+\sqrt{x}-2\sqrt{x}-1+1=x-\sqrt{x}\)

25 tháng 6 2018

a) \(\dfrac{\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}=\dfrac{\sqrt{2}\left(1+\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}+\sqrt{3}\right)}\dfrac{\sqrt{2}+2+\sqrt{6}}{\left(1+\sqrt{2}\right)^2-3}=\dfrac{\sqrt{2}+2+\sqrt{6}}{2\sqrt{2}+3-3}=\dfrac{\sqrt{2}+2+\sqrt{6}}{2\sqrt{2}}=\dfrac{1+\sqrt{2}+\sqrt{3}}{2}\)

b) \(\dfrac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-5}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{2\sqrt{6}+5-5}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{2\sqrt{6}}=\dfrac{3\sqrt{2}+2\sqrt{3}+\sqrt{30}}{2\sqrt{6}\cdot\sqrt{6}}=\dfrac{3\sqrt{2}+2\sqrt{3}+\sqrt{30}}{12}\)

a: \(=\left(\dfrac{\sqrt{2}}{4}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\cdot10\sqrt{2}\right)\cdot8\)

\(=2\sqrt{2}-12\sqrt{2}+64\sqrt{2}\)

\(=54\sqrt{2}\)

b: \(=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9\)

c: \(=\dfrac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

d: \(=\sqrt{\dfrac{4-2\sqrt{3}}{4}}+\dfrac{1-\sqrt{3}}{2}\)

\(=\dfrac{\sqrt{3}-1+1-\sqrt{3}}{2}=0\)