Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quãng đường người đó đi được sau n lần kéo là: \(100.{\left( {1 - 0,25} \right)^n}\)
Quãng đường người đó đi được sau 10 lần kéo là: \(100.{\left( {1 - 0,25} \right)^{10}} \approx 5,63\,\,\left( m \right)\)
Chọn D
Gọi r i là khoảng cách lần rơi thứ i
Ta có
Suy ra tổng các khoảng cách rơi của quả bóng từ lúc thả bóng cho đến lần rơi thứ n bằng
Gọi t i là khoảng cách lần nảy thứ i
Ta có
Suy ra tổng các khoảng cách nảy của quả bóng từ lúc thả bóng cho đến đến lần nảy thứ n bằng
Vậy tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng
Mỗi khi chạm đất quả bóng lại nảy lên một độ cao bằng 1/10 độ cao của lần rơi ngay trước đó và sau đó lại rơi xuống từ độ cao thứ hai này. Do đó, độ dài hành trình của quả bóng kể từ thời điểm rơi ban đầu đến:
- Thời điểm chạm đất lần thứ nhất là d 1 = 63
- Thời điểm chạm đất lần thứ hai là:
- Thời điểm chạm đất lần thứ ba là:
- Thời điểm chạm đất lần thứ tư là:
....
- Thời điểm chạm đất lần thứ n (n > 1) là
(Có thể chứng minh khẳng định này bằng quy nạp).
Do đó, độ dài hành trình của quả bóng kể từ thời điểm rơi ban đầu đến khi nằm yên trên mặt đất là :
Vì
là một cấp số nhân lùi vô hạn, công bội q = 1/10 nên ta có
Vậy
Gọi (un) là dãy số thể hiện quãng đường di chuyển của quả bóng sau mỗi lần chạm đất.
Ta có: \({u_1} = 55,8;{u_2} = \frac{1}{{10}}.{u_1};{u_3} = {\left( {\frac{1}{{10}}} \right)^2}.{u_1};...;{u_n} = {\left( {\frac{1}{{10}}} \right)^{n - 1}}.{u_1}.\)
Khi đó dãy (un) lập thành một cấp số nhân lùi vô hạn có số hạng đầu u1 = 55,8 và công bội \(q = \frac{1}{{10}}\) thỏa mãn \(\left| q \right| < 1.\)
\( \Rightarrow {S_n} = {u_1} + {u_2} + ... + {u_n} + ... = \frac{{55,8}}{{1 - \frac{1}{{10}}}} = 62\left( m \right)\)
Vậy tổng độ dài quãng đường di chuyển của quả bóng tính từ lúc thả ban đầu cho đến khi quả bóng đó chạm đất n lần là 62 m.
Ta nhận xét rằng khi thả bóng thì bóng đi được 1 lược còn kể từ lần nảy đầu tiên đến khi dừng lại thì bóng đi được 2 lược (1 nảy lên và 1 rơi xuống). Giả sử sau lần nảy thứ n + 1 thì bóng dừng hẳn.
Quãng đường bóng đi được tính đến lần chạm sàn thứ nhất là:
\(S_1=63\)
Quãng đường bóng đi được tính đến lần chạm sàn thứ 2 là:
\(S_2=63+63.\dfrac{1^1}{10^1}\)
Quãng đường bóng đi được tính đến lần chạm sàn thứ (n + 1) là:
\(S_{n+1}=63+63.\left(\dfrac{1}{10}+\dfrac{1}{10^2}+...+\dfrac{1}{10^n}\right)\)
\(=63+63.\dfrac{\dfrac{1}{10}}{1-\dfrac{1}{10}}=70\left(m\right)\)
Vậy độ dài hành trình của quả bóng từ thời điểm ban đầu cho đến khi nó nằm yên trên mặt đất là \(70\left(m\right)\)
Đáp án B
Bình có 2 khả năng thắng cuộc:
+) Thắng cuộc sau lần quay thứ nhất. Nếu Bình quay vào một trong 5 nấc: 80, 85, 90, 95, 100 thì sẽ thắng nên xác suất thắng cuộc của Bình trường hợp này là P 1 = 5 20 = 1 4
+) Thắng cuộc sau 2 lần quay. Nếu Bình quay lần 1 vào một trong 15 nấc: 5, 10, ..., 75 thì sẽ phải quay thêm lần thứ 2. Ứng với mỗi nấc quay trong lần thứ nhất, Bình cũng có 5 nấc để thắng cuộc trong lần quay thứ 2, vì thế xác suất thắng cuộc của Bình trường hợp này là P 2 = 15 × 5 20 × 20 = 3 16
Từ đó, xác suất thắng cuộc của Bình là
Chọn D
Sau khi chia tiền lần đầu tiên sẽ có 8 trường hợp xảy ra như sau:
Raashan |
Sylvia |
Ted |
1 |
1 |
1 |
1 |
1 |
1 |
2 |
1 |
0 |
2 |
0 |
1 |
1 |
2 |
0 |
0 |
2 |
1 |
1 |
0 |
2 |
0 |
1 |
2 |
Các số lần lượt là số tiền của mỗi bạn. Có hai trường hợp cho kết quả (1;1;1) đó là Raashan → Sylvia → Ted Raashan hoặc Raashan Ted Sylvia Raashan.
Với mỗi trường hợp cho kết quả (1;1;1) thì lượt chơi tiếp theo sẽ có 1 4 cơ hội để số tiền mỗi người bằng nhau.
Đối với trường hợp một người có 2$, một người có 1$ và người còn lại không có tiền thì lượt chơi thứ hai sẽ có 4 trường hợp xảy ra. Không mất tính tổng quát ta giả sử Raashan có 2$, Sylvia có 1$ và Ted không có tiền, ta có những cách chuyển tiền như sau:
- Raashan ⇆ Sylvia và Ted không nhận được tiền.
Raashan → Sylvia → Ted.
- Raashan → Ted → Sylvia.
- Sylvia → Raashan → Ted.
Như vậy trong 4 khả năng trên chỉ có một khả năng cho kết quả (1;1;1) chiếm tỉ lệ 1 4
Cứ tiếp tục chơi như vậy đến lượt thứ 2019. Khi đó xác suất mỗi người chơi có 1$ là
a, Độ cao nảy ngược lên của người đó là một cấp số nhân có số hạng đầu \(u_1=9\) và công bội \(q=60\%=0,6\)
Độ cao nảy ngược lên của người đó ở lần nảy thứ ba là:
\(u_3=u_1\cdot q^2=9\cdot\left(0,6\right)^2=3,24\left(m\right)\)
b, Tổng các độ cao nảy ngược lên của người đó trong 5 lần này đầu là:
\(S_5=\dfrac{u_1\left(1-q^5\right)}{1-q}=\dfrac{9\cdot\left(1-0,6^2\right)}{1-0,6}=20,7504\left(m\right)\)