Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vân trung tâm sẽ bị dịch chuyển lên phía trên một khoảng là
\(x = \frac{e.(n-1)D}{a}=\frac{10.(1,5-1).2}{0,6}=16,7mm = 1,67cm.\)
Trong thí nghiệm giao thoa ánh sáng khe Y- âng a = 0,6 mm, D = 2 m,λλ = 0,60 μmμm. Đặt ngay sau khe S1 (phía trên) một bản mỏng thủy tinh trong suốt có bề dày 10 μmμm và có chiết suất 1,5. Hỏi vân trung tâm dịch chuyển thế nào?
A.Dịch chuyển lên trên 1,67 mm.
B.Dịch chuyển xuống dưới 1,67 mm.
C Dịch chuyển lên trên 1,67 cm.
D.Dịch chuyển xuống dưới 2,67 mm.
Vị trí vân sáng bậc 4 của ánh sáng đỏ: \(x_s^4 = 4. \frac{\lambda_d D}{a}\)
Tại vị trí này có vân sáng bậc \(k\) của ánh sáng có bước sóng \(\lambda\) tức là
\(x_s^4 = x_s^k<=> 4\frac{\lambda_d D}{a}= k\frac{\lambda D}{a} \)
<=> \(\lambda = \frac{4\lambda_d}{k}.\ \ (1)\)
Mà bước sóng \(\lambda\) này thỏa mãn \(0,38 \mu m \leq \lambda \leq 0,76 \mu m.\)
Thay (1) vào ta được \(0,38 \leq \frac{4\lambda_d}{k} \leq 0,76\)
<=> \( \frac{4\lambda_d }{0,76} \leq k \leq \frac{4\lambda_d}{0,38}\)
<=> \(\frac{4.0,76}{0,76} \leq k \leq \frac{4.0,76}{0,38}\)
<=> \(4 \leq k \leq 8.\)
=> \(k = 4,5,6,7,8.\)(trong đó k = 4 chính là vân sáng bậc 4 của ánh sáng đỏ)
Vậy ngoài vân sáng bậc 4 của ánh sáng đỏ ra thì còn 4 vân sáng của các ánh sáng khác tại vị trí đó.
Tịnh tiến màn quan sát lại gần mặt phẳng chưa hai khe 25 cm tức là \(D' = D-0,25.\)
\(i_1 = \frac{\lambda D}{a}\\
i_2 =\frac{\lambda (D-0,25)}{a} \)=> \(\frac{i}{i'}= \frac{D}{D-0,25}= \frac{5}{4}\)
=> \(D = 5.0,25 = 1,25m.\)
=> \(\lambda = \frac{i.a}{D}= 0,48 \mu m.\)
Chú ý là giữ nguyên đơn vị i (mm); a (mm) ; D (m) thì đơn vị bước sóng \(\lambda (\mu m)\).
Tại vị trí cách vân trung tâm 3 mm có vân sáng bậc \(k\) của bức xạ \(\lambda\) khi
\(x=3mm = ki =k\frac{\lambda D}{a}.\)
=> \(\lambda = \frac{3.a}{D k}.(1)\)
Mặt khác : \(0,38 \mu m \leq \lambda \leq 0,76 \mu m.\)
<=> \(0,38 \mu m \leq \frac{3a}{kD} \leq 0,76 \mu m.\)
<=> \(\frac{3.0,8}{0,76.2} \leq k \leq \frac{3.0,8}{0,38.2} \)
Giữ nguyên đơn vị của \(x = 3mm; a = 0,8mm;\lambda = 0,76 \mu m;0,38 \mu m; D= 2m\)
<=> \(1,57 \leq k \leq 3,15.\)
<=> \(k = 2,3.\)
Thay vào (1) ta thu được hai bước sóng là \(\lambda_1 = \frac{3.0,8}{2.2}=0,6\mu m.\)
\(\lambda_2 = \frac{3.0,8}{3.2}=0,4\mu m.\)
dd12SS12xOM
M là vân sáng bậc 4 nên
\(x_{s4} = 4i = 4 \frac{\lambda D}{a}.\)
Hiệu đường đi từ hai khe đến điểm M là
\(d_2 -d_1 = \frac{a x}{D}= \frac{a}{D}4.\frac{\lambda D}{a}= 4 \lambda=2,4.10^{-6}m.\)
\(i = \frac{\lambda D}{a}=\frac{0,5.2}{0,5}= 2mm.\)
Số vân sáng trên màn quan sát là
\(N_s= 2.[\frac{L}{2i}]+1 =2.6+1 = 13.\)
Khi đặt thêm bản mỏng độ dày e vào một trong hai nguồn thì vân trung tâm dời đi một đoạn là
\(x = \frac{e(n-1)D}{a}\)
=> \(e = \frac{ax}{(n-1)D} = \frac{0,5.3}{0,5.1,2}= 2,5 \mu m.\)
Chú ý: khi bấm máy không cần đổi lại đơn vị của các đại lượng.
Theo đề bài: Với bức xạ λ1 thì 10i1 = MN = 20mm → i1 = 2mm.
\(\frac{\iota_1}{\iota_2}=\frac{\text{λ}_1}{\text{λ}_2}=\frac{3}{5}\)\(\rightarrow\iota_2=\frac{10}{3}mm\rightarrow N_2=2.\left[\frac{MN}{2\iota_2}\right]+1=7\)
Số vân sáng trong khoảng giữa hai vân sáng nằm ở hai đầu là
\(N_s = 2[\frac{L}{2i}]+1=> \frac{L}{2i }= 10=> i = 2mm.\)
\(\lambda = \frac{ai}{D}= 0,6 \mu m.\)
Khi đặt thêm bản mỏng trước một trong hai khe thì độ dịch của vân trung tâm là
\(x = \frac{e(n-1)D}{a}\)
Vân trung tâm dời tới vị trí của vân sáng bậc 10 tức là
\(x = x_{s10}= 10.i\)
=> \( \frac{e(n-1)D}{a} = 10.\frac{\lambda D}{a}\)
=> \(e(n-1)=10\lambda\)
=> \(n = \frac{10\lambda }{e}+1=\frac{10.0,5}{10}+1=1,5 \)
Chú ý là giữ nguyên đơn vị của \(\lambda (\mu m)\) và \(e (\mu m)\).
Trong thí nghiệm Y- âng về giao thoa, người ta dùng ánh sáng có bước sóng 0,5 μmμm . Đặt một bản thủy tinh mỏng có độ dầy 10 μmμm vào trước một trong hai khe thì thấy vân sáng trung tâm dời tới vị trí của vân sáng bậc 10. Chiết suất của bản mỏng là
A.1,75.
B.1,45.
C.1,5.
D.1,35.