K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

Khi các vân sáng trùng nhau:   \(k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)

                                                  k10,4 = k20,5 = k30,6 \(\Leftrightarrow\) 4k1 = 5k2 = 6k3 

BSCNN(4,5,6) = 60

\(\Rightarrow\) k1 = 15 ; k2 = 12 ; k3 = 10 Bậc 15 của \(\lambda_1\) trùng bậc 12 của \(\lambda_2\) trùng với bậc 10 của \(\lambda_3\)

Trong khoảng giữa phải có:  Tổng số VS tính toán = 14 + 11 + 9 = 34

Ta xẽ lập tỉ số cho tới khi   k1 = 15 ; k2 = 12 ; k3 = 10

  - Với cặp \(\lambda_1;\lambda_2:\) \(\frac{k_1}{k_2}=\frac{\lambda_1}{\lambda_2}=\frac{5}{4}=\frac{10}{8}=\frac{15}{12}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k1 = 15 ; k2 = 12  thì có tất cả 4 vị trí trùng nhau

Vị trí 1: VSTT  

Vị trí 2:  k1 = 5 ; k2 = 4

Vị trí 3:  k1 = 10 ; k2 = 8                    => Trong khoảng giữa có 2 vị trí trùng nhau.

Vị trí 4:  k1 = 15 ; k2 = 12

  - Với cặp\(\lambda_2;\lambda_3:\)  \(\frac{k_2}{k_3}=\frac{\lambda_3}{\lambda_2}=\frac{6}{5}=\frac{12}{10}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k2 = 12 ; k3 = 10  thì có tất cả 3 vị trí trùng nhau

Vị trí 1: VSTT  

Vị trí 2:  k2 = 6 ; k3 = 5                     \(\Rightarrow\) Trong khoảng giữa có 1 vị trí trùng nhau.

Vị trí 3:  k2 = 12 ; k3 = 10

- Với cặp \(\lambda_1;\lambda_3:\)    \(\frac{k_1}{k_3}=\frac{\lambda_3}{\lambda_1}=\frac{3}{2}=\frac{6}{4}=\frac{9}{6}=\frac{12}{8}=\frac{15}{10}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k1 = 15 ; k3 = 10  thì có tất cả 6 vị trí trùng nhau

Vị trí 1: VSTT 

Vị trí 2:  k1 = 3   ;  k3 = 2

Vị trí 3:  k1 = 6   ;  k3 = 4

Vị trí 4:  k1 = 9   ;  k3 = 6                                     \(\Rightarrow\) Trong khoảng giữa có 4 vị trí trùng nhau.

Vị trí 5:  k1 = 12 ;  k3 = 8

Vị trí 6:  k1 = 15 ;  k3 = 10

Vậy tất cả có 2 + 1 +4 = 7 vị trí trùng nhau của các bức xạ.

Số VS quan sát được = Tổng số VS tính toán – Số vị trí trùng nhau       = 34 – 7 = 27 vân sáng.  

\(\rightarrow D\)   

3 tháng 5 2016

ok

3 tháng 2 2016

Khoảng vân ứng với bước sóng \(\lambda\) là:

\(i=\lambda\frac{D}{d}=k\lambda\)  (với \(k=\frac{D}{d}\))

Vân sáng trung tâm là cực đại chung của cả 3 bước sóng.
Cực đại chung gần nhất ứng với khoảng cách là bội chung nhỏ nhất của 3 khoảng vân.

Để đơn giản, ta tìm bội chung nhỏ nhất của 42, 56, 63. Mình sẽ hướng dẫn luôn.
Trước hết phân tích thành tích các số nguyên tố: 

\(\text{42=7×2×3 }\)

\(56=7\text{×}2^3\)

\(63=7\text{×}3^2\)

Bội chung nhỏ nhất là: \(7\text{×}2^3\text{×}3^2=504\)  

Vậy khoảng giữa 2 vân sáng liên tiếp có màu giống màu vân trung tâm là:\(d=5,04k\left(m\right)\)

Bội chung nhỏ nhất giữa 42 và 56 là: \(\text{7×}2^3\text{×}3=168\)

Suy ra trong khoảng \(d\) có 2 vân sáng là : \(\lambda_1\) và \(\lambda_2\) trùng nhau

Bội chung nhỏ nhất giữa 42 và 63 là: \(7\text{×}2\text{×}3^2=126\)

Suy ra trong khoảng \(d\)có 3 vân sáng là \(\lambda_1\) và \(\lambda_3\) trùng nhau.

Bội chung nhỏ nhất giữa 56 và 63 là: \(7\text{×}2^3\text{×}3^2=504\)

Suy ra trong khoảng \(d\) có 0 vân sáng là \(\lambda_2\) và \(\lambda_3\) trùng nhau.

Vậy tổng số vân sáng bên trong khoảng d là:

\(\frac{d}{i_1}-1+\frac{d}{i_2}-1+\frac{d}{i_3}-1-2-3-0\)

\(=\frac{504}{42}-1+\frac{504}{56}-1+\frac{504}{63}-1-2-3-0\)

\(=21\) (vân sáng )

 

----> chọn A

3 tháng 2 2016

ta có: 

\(i_1:i_2:i_3=\lambda_1:\lambda_2:\lambda_3=6:8:9\)

Bội chung nhỏ nhất là 72

Như vậy vân 12 của bức xạ 1 trùng với 9 của bx2 và 8 của bx3 

trong khoảng này thì bx2 và và bx3 không trùng cực đại vì 8 và 9 nguyên tố cùng nhau

cực đại số 4 và số 8 của bx1 trùng với cực đại số 3 và 6 của bx2

cực đại số 3 ,6 và số 9 của bx1 trùng với cực đại số 2;  4và  6 của bx2 

Số cực đại nhìn thấy là

11+8+7-2-3=21 

 

\(\rightarrow chọn.A\)

12 tháng 6 2016

\(i_1=\dfrac{\lambda_1.D}{a}=1,2mm\)

Số vân sáng  của i1 là: \(|\dfrac{24}{2.1,2}|.2+1=21\)

Số vân sáng của i2 là: \(33+5-21=17\)

\(\Rightarrow i_1=1,5mm\)

\(\Rightarrow \lambda_2=0,75\mu m\)

24 tháng 1 2019

Có thể làm rõ hơn ko ạ???

30 tháng 4 2016

Tóm tắt:

\(a=10^{-3}m\)

\(D=0,5m\)

\(\lambda_1=0,64\mu m\)

\(\lambda_2=0,6\mu m\)

\(\lambda_3=0,54\mu m\)

\(\lambda_4=0,48\mu m\)

\(\Delta x=?\)

Giải:

Khi vân sáng trùng nhau:  

\(k_1\lambda_1=\)\(k_2\lambda_2=\)\(k_3\lambda_3=\)\(k_4\lambda_4\)  \(\Leftrightarrow k_10,64\)\(=k_20,6\)\(=\)\(k_30,54\)\(=k_40,48\)

\(\Leftrightarrow\)\(k_164=k_260=k_354=k_448\)  \(\Leftrightarrow\) \(k_164=k_260=k_354=k_448\)

\(\Leftrightarrow k_132=k_230=k_327=k_424\)

BSCNN( 32;30;27;24 ) = 4320

\(k_1=\frac{4320}{32}=135\)

\(k_2=\frac{4320}{30}=144\)

\(k_3=\frac{4320}{27}=160\)

\(k_4=\frac{4320}{24}=180\)

Vậy \(\Delta x=135i_1=144i_2=160i_3=180i_4\)\(=0,0432m=4,32cm\)

\(\rightarrow D\)


7 tháng 5 2016

Khi các vân sáng trùng nhau:  \(k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)

      \(k_10,64=k_20,54=k_30,48\Leftrightarrow64k_1=54k_2=48k_3\Leftrightarrow32k_1=27k_2=24k_3\)

  \(BSCNN\left(32,27,24\right)=864\Rightarrow k_1=27;k_2=32;k_3=36\)

Vân sáng đầu tiên có cùng màu với vân sáng trung tâm : là vị trí Bậc 27 của \(\lambda_1\) trùng bậc 32 của\(\lambda_2\) trùng với bậc 36 của \(\lambda_3\)

Ta sẽ lập tỉ số cho đến khi: k1 = 27 ; k2 = 32 ; k3 = 36    

\(\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{27}{32}\)

\(\frac{k_2}{k_3}=\frac{\lambda_3}{\lambda_2}=\frac{8}{9}=\frac{16}{18}=\frac{24}{27}=\frac{32}{36}\)

\(\frac{k_1}{k_3}=\frac{\lambda_3}{\lambda_1}=\frac{3}{4}=\frac{6}{8}=\frac{9}{12}=\frac{12}{16}=\frac{15}{20}=\frac{18}{24}=\frac{21}{28}=\frac{24}{32}=\frac{27}{36}\) 

Vậy vị trí này có:

\(k_1=k_{đỏ}=27\)     (ứng với vân sáng bậc 27)

\(k_2=k_{lục}=32\)    (ứng với vân sáng bậc 32)

\(k_3=k_{lam}=36\)    (ứng với vân sáng bậc 36)

\(\rightarrow\)C

11 tháng 1 2016

     \(x_s= k\frac{\lambda D}{a}.\) 
     \(d_2-d_1 = \frac{x_sa}{D}= k\lambda\)

=>\(k= \frac{d_2-d_1}{\lambda}=\frac{1,5.10^{-6}}{\lambda}.(1)\)

Thay các giá trị của bước sóng \(\lambda\)1, \(\lambda\)2,\(\lambda\)3 vào biểu thức (1) làm sao mà ra số nguyên thì đó chính là vân sáng của bước sóng đó.

\(\frac{1,5.10^{-6}}{750.10^{-9}}=2.\)(chọn)
\(\frac{1,5.10^{-6}}{675.10^{-9}}=2,222.\)(loại)
\(\frac{1,5.10^{-6}}{600.10^{-9}}=2,5.\)(loại)
 
 

 

22 tháng 1 2015

Tại điểm M  là vân sáng nên \(x_M=ki=k\frac{\lambda D}{a}\)

\(\lambda=\frac{x_Ma}{kD}=\frac{4,2.0,5}{k.1,4}=\frac{1,5}{k}\)

Theo giả thiết: \(0,38\le\lambda\le0,76\)

\(\Rightarrow0,38\le\frac{1,5}{k}\le0,76\)

\(\Rightarrow1,97\le k\le3,94\)

k nguyên nên k = 2,3.

Như vậy, tại M có 2 bước sóng cho vân sáng, đáp án là A.

O
ongtho
Giáo viên
23 tháng 1 2016

Đổi đơn vị: \(\lambda_1=450n m= 0,45 \mu m.\)

                    \(\lambda_1=600n m= 0,6 \mu m.\)

Hai vân sáng trùng nhau khi \(k_1i_1=k_2i_2 \)

<=> \(\frac{k_1}{k_2}= \frac{i_1}{i_2}=>\frac{k_1}{k_2}= \frac{\lambda_1}{\lambda_2} =\frac{3}{4}\ \ (*)\)

Xét trong đoạn MN nên \(5,5 mm \leq x_s \leq 22mm. \)

                               <=> \(5,5 mm \leq k_1\frac{\lambda_1 D}{a} \leq 22mm. \)

                               <=> \(\frac{5,5.a}{\lambda_1 D} \leq k_1\leq \frac{22.a}{\lambda_1 D}\)

Giữ nguyên đơn vị của a = 0,5 mm; D = 2m; \(\lambda_1=0,45 \mu m.\)

                             <=> \(3,055 \leq k_1 \leq 12,22\) 

Kết hợp với (*) ta có \(k_1\) chỉ có thể nhận giá trị : 3x2= 6; 3x3 = 9; 3x4 =12.

Như vậy có 3 vị trí trùng nhau của hai bức xạ trong đoạn MN.