Trong thí nghiệm Y âng về giao thoa ánh sáng, nếu chiếu vào mỗi khe S1, S2 một á...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2018

Đáp án C

Điều kiện để có giao thoa sóng là hai sóng gặp nhau là hai sóng kết hợp: Cùng tần số, cùng phương và có độ lệch pha không đổi. Nên khi chiếu vào mỗi khe của thí nghiệm Yâng một ánh sáng đơn sắc thì hai sóng gặp nhau không cùng tần số, nên không giao thoa.

26 tháng 1 2016

Theo đề bài: Với bức xạ λ1 thì 10i1 = MN = 20mm → i1 = 2mm.

\(\frac{\iota_1}{\iota_2}=\frac{\text{λ}_1}{\text{λ}_2}=\frac{3}{5}\)\(\rightarrow\iota_2=\frac{10}{3}mm\rightarrow N_2=2.\left[\frac{MN}{2\iota_2}\right]+1=7\)

 

3 tháng 5 2016

Khi các vân sáng trùng nhau:   \(k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)

                                                  k10,4 = k20,5 = k30,6 \(\Leftrightarrow\) 4k1 = 5k2 = 6k3 

BSCNN(4,5,6) = 60

\(\Rightarrow\) k1 = 15 ; k2 = 12 ; k3 = 10 Bậc 15 của \(\lambda_1\) trùng bậc 12 của \(\lambda_2\) trùng với bậc 10 của \(\lambda_3\)

Trong khoảng giữa phải có:  Tổng số VS tính toán = 14 + 11 + 9 = 34

Ta xẽ lập tỉ số cho tới khi   k1 = 15 ; k2 = 12 ; k3 = 10

  - Với cặp \(\lambda_1;\lambda_2:\) \(\frac{k_1}{k_2}=\frac{\lambda_1}{\lambda_2}=\frac{5}{4}=\frac{10}{8}=\frac{15}{12}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k1 = 15 ; k2 = 12  thì có tất cả 4 vị trí trùng nhau

Vị trí 1: VSTT  

Vị trí 2:  k1 = 5 ; k2 = 4

Vị trí 3:  k1 = 10 ; k2 = 8                    => Trong khoảng giữa có 2 vị trí trùng nhau.

Vị trí 4:  k1 = 15 ; k2 = 12

  - Với cặp\(\lambda_2;\lambda_3:\)  \(\frac{k_2}{k_3}=\frac{\lambda_3}{\lambda_2}=\frac{6}{5}=\frac{12}{10}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k2 = 12 ; k3 = 10  thì có tất cả 3 vị trí trùng nhau

Vị trí 1: VSTT  

Vị trí 2:  k2 = 6 ; k3 = 5                     \(\Rightarrow\) Trong khoảng giữa có 1 vị trí trùng nhau.

Vị trí 3:  k2 = 12 ; k3 = 10

- Với cặp \(\lambda_1;\lambda_3:\)    \(\frac{k_1}{k_3}=\frac{\lambda_3}{\lambda_1}=\frac{3}{2}=\frac{6}{4}=\frac{9}{6}=\frac{12}{8}=\frac{15}{10}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k1 = 15 ; k3 = 10  thì có tất cả 6 vị trí trùng nhau

Vị trí 1: VSTT 

Vị trí 2:  k1 = 3   ;  k3 = 2

Vị trí 3:  k1 = 6   ;  k3 = 4

Vị trí 4:  k1 = 9   ;  k3 = 6                                     \(\Rightarrow\) Trong khoảng giữa có 4 vị trí trùng nhau.

Vị trí 5:  k1 = 12 ;  k3 = 8

Vị trí 6:  k1 = 15 ;  k3 = 10

Vậy tất cả có 2 + 1 +4 = 7 vị trí trùng nhau của các bức xạ.

Số VS quan sát được = Tổng số VS tính toán – Số vị trí trùng nhau       = 34 – 7 = 27 vân sáng.  

\(\rightarrow D\)   

3 tháng 5 2016

ok

4 tháng 2 2016

Giả sử ta dịch vân sáng trung tâm về M thì N là vị trí vân sáng thứ 10(có 10 vân tối)

\(\Rightarrow i_1=2mm\) , Khi thay \(\lambda_1\) bằng \(\lambda_2\) \(\Rightarrow\frac{i_1}{i_2}=\frac{\lambda_1}{\lambda_2}\Rightarrow i_2=\frac{i_1\lambda_2}{\lambda_1}=\frac{10}{3}mm\)

M là vị trí của 1 vân giao thoa,Ta có: 

 Vân trung tâm trên màn không đổi⇒ta tìm vị trí trùng nhau của 2 loai ánh sáng với 2 khoảng vân khác nhau hay tương ứng với khoảng cách từ vân trung tâm tới M.Ta chia 2 TH như sau:

TH1: M là vân tối

\(\frac{10}{3}.\left(n,5\right)=2k\) với  n,k  nguyên  thì phương trình vô nghiệm

TH2:M là vân sáng

\(\frac{10}{3}.x=2y\) 

ới  x,y  nguyên  thì phương trình có nghiệm (3;5) và (6;10)

cả 2 nghiệm này đều kết luận trên MN có 7 vân sáng 

 

----->chọn A

23 tháng 6 2018

Từ (1); (2); (3) ta được tỷ lệ trên

Số vân sáng đơn sắc cần tìm là

=16

3 tháng 2 2016

Khoảng vân ứng với bước sóng \(\lambda\) là:

\(i=\lambda\frac{D}{d}=k\lambda\)  (với \(k=\frac{D}{d}\))

Vân sáng trung tâm là cực đại chung của cả 3 bước sóng.
Cực đại chung gần nhất ứng với khoảng cách là bội chung nhỏ nhất của 3 khoảng vân.

Để đơn giản, ta tìm bội chung nhỏ nhất của 42, 56, 63. Mình sẽ hướng dẫn luôn.
Trước hết phân tích thành tích các số nguyên tố: 

\(\text{42=7×2×3 }\)

\(56=7\text{×}2^3\)

\(63=7\text{×}3^2\)

Bội chung nhỏ nhất là: \(7\text{×}2^3\text{×}3^2=504\)  

Vậy khoảng giữa 2 vân sáng liên tiếp có màu giống màu vân trung tâm là:\(d=5,04k\left(m\right)\)

Bội chung nhỏ nhất giữa 42 và 56 là: \(\text{7×}2^3\text{×}3=168\)

Suy ra trong khoảng \(d\) có 2 vân sáng là : \(\lambda_1\) và \(\lambda_2\) trùng nhau

Bội chung nhỏ nhất giữa 42 và 63 là: \(7\text{×}2\text{×}3^2=126\)

Suy ra trong khoảng \(d\)có 3 vân sáng là \(\lambda_1\) và \(\lambda_3\) trùng nhau.

Bội chung nhỏ nhất giữa 56 và 63 là: \(7\text{×}2^3\text{×}3^2=504\)

Suy ra trong khoảng \(d\) có 0 vân sáng là \(\lambda_2\) và \(\lambda_3\) trùng nhau.

Vậy tổng số vân sáng bên trong khoảng d là:

\(\frac{d}{i_1}-1+\frac{d}{i_2}-1+\frac{d}{i_3}-1-2-3-0\)

\(=\frac{504}{42}-1+\frac{504}{56}-1+\frac{504}{63}-1-2-3-0\)

\(=21\) (vân sáng )

 

----> chọn A

3 tháng 2 2016

ta có: 

\(i_1:i_2:i_3=\lambda_1:\lambda_2:\lambda_3=6:8:9\)

Bội chung nhỏ nhất là 72

Như vậy vân 12 của bức xạ 1 trùng với 9 của bx2 và 8 của bx3 

trong khoảng này thì bx2 và và bx3 không trùng cực đại vì 8 và 9 nguyên tố cùng nhau

cực đại số 4 và số 8 của bx1 trùng với cực đại số 3 và 6 của bx2

cực đại số 3 ,6 và số 9 của bx1 trùng với cực đại số 2;  4và  6 của bx2 

Số cực đại nhìn thấy là

11+8+7-2-3=21 

 

\(\rightarrow chọn.A\)

30 tháng 1 2016

Giả sử ta dịch vân sáng trung tâm về M thì N là vị trí vân sáng thứ 10(có 10 vân tối)

\(\Rightarrow i_1=2mm\) ,Khi thay \(\text{λ}_1\)bằng \(\text{λ}_2\)\(\Rightarrow\frac{i_1}{i_2}=\frac{\text{λ}_1}{\text{λ}_2}\Rightarrow i_2=\frac{i_1\text{λ}_2}{\text{λ}_1}=\frac{10}{3}mm\)

M là vị trí của 1 vân giao thoa,Ta có: 

 Vân trung tâm trên màn không đổi \(\Rightarrow\)ta tìm vị trí trùng nhau của 2 loai ánh sáng với 2 khoảng vân khác nhau hay 

tương ứng với khoảng cách từ vân trung tâm tới M.Ta chia 2 TH như sau:

TH1: M là vân tối

\(\frac{10}{3}.\left(n,5\right)=2k\)với  n,k  nguyên  thì phương trình vô nghiệm

TH2:M là vân sáng

\(\frac{10}{3}.x=2y\) với  x,y  nguyên  thì phương trình có nghiệm (3;5) và (6;10)

cả 2 nghiệm này đều kết luận trên MN có 7 vân sáng

-----> chọn A

 

 

30 tháng 4 2016

        \(\lambda_1\)(tím)\(=0,42\mu m\) , \(\lambda_2\) (lục) \(=0,56\mu m\) , \(\lambda_3\) (đỏ) \(=0,7\mu m\)

Vì giữa hai vân sáng liên tiếp có màu giống như màu vân sáng trung tâm có 11 cực đại giao thoa của ánh sáng đỏ \(\Rightarrow k_{đỏ}=k_3=12\)

Từ BSCNN \(\Rightarrow k_1=k_{tím}=20\Rightarrow\) giữa hai vân sáng liên tiếp có màu giống như màu vân sáng trung tâm có 19 vân màu tím

  \(\Rightarrow k_{lục}=k_2=15\Rightarrow\) giữa hai vân sáng liên tiếp có màu giống như màu vân sáng trung tâm có 14 vân màu lục.

\(\rightarrow A\)

29 tháng 4 2016

Tóm tắt:

a = \(10^{-3}m\)

D = \(1,25m\)

\(\lambda_1=0,64\mu m\)

\(\lambda_2=0,48\mu m\)

\(\Delta x=?\)

Giải:

Khi vân sáng trùng nhau:  

\(k_1\lambda_1=k_2\lambda_2\Rightarrow\)\(\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{0,48}{0,64}=\frac{3}{4}\)

Vậy: \(k_1=3;k_2=4\)\(\Rightarrow\Delta x=3i_1=3.\frac{\lambda_1.D}{a}=3.\)\(\frac{0,64.10^{-6}.1,25}{10^{-3}}=2,4.10^{-3}m=2,4mm\)

\(\rightarrow D\)

8 tháng 3 2016

1) i=2mm.            
Biết bề rộng miền giao thoa L=3cm=30mm, ta có:            
\(\frac{L}{2i}=7,5\) Phần nguyên n=7.            
Suy ra số vân sáng: \(N_1=2n+1=15\) vân;            
Số vân tối:      \(N_2=2\left(n+1\right)=16\)  vân.        
2) Khi thực hiện thí nghiệm trong môi trường nước, bước sóng ánh sáng là \(\lambda'=\frac{\lambda}{n}\), do đó khoảng vân bây giờ là : \(I'=\lambda'\frac{D}{a}=\frac{i}{n}=1,5mm\)
Ta có: \(\frac{L}{2i'}=10\). Suy ra số vân sáng:\(N'_1=2n+1=21\) vân            
                Số vân tối :               \(N'_2=2n=20\) vân.

6 tháng 1 2016

Vân sáng bậc 4 cách vân trung tâm là 

\(x_ 4 = 4.i = 4.\frac{\lambda D}{a} = 3,2mm.\)

Chú ý nếu giữ nguyênđơn vị của \(\lambda (\mu m)\), D(m), a(mm) thì khi đó kết quả cho \(x\) ra đơn vị là mm.

6 tháng 1 2016

A( mặc dù ko bít có đúng ko nhưng mong tích cho mình nhé