Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khoảng vân ứng với bước sóng \(\lambda\) là:
\(i=\lambda\frac{D}{d}=k\lambda\) (với \(k=\frac{D}{d}\))
Vân sáng trung tâm là cực đại chung của cả 3 bước sóng.
Cực đại chung gần nhất ứng với khoảng cách là bội chung nhỏ nhất của 3 khoảng vân.
Để đơn giản, ta tìm bội chung nhỏ nhất của 42, 56, 63. Mình sẽ hướng dẫn luôn.
Trước hết phân tích thành tích các số nguyên tố:
\(\text{42=7×2×3 }\)
\(56=7\text{×}2^3\)
\(63=7\text{×}3^2\)
Bội chung nhỏ nhất là: \(7\text{×}2^3\text{×}3^2=504\)
Vậy khoảng giữa 2 vân sáng liên tiếp có màu giống màu vân trung tâm là:\(d=5,04k\left(m\right)\)
Bội chung nhỏ nhất giữa 42 và 56 là: \(\text{7×}2^3\text{×}3=168\)
Suy ra trong khoảng \(d\) có 2 vân sáng là : \(\lambda_1\) và \(\lambda_2\) trùng nhau
Bội chung nhỏ nhất giữa 42 và 63 là: \(7\text{×}2\text{×}3^2=126\)
Suy ra trong khoảng \(d\)có 3 vân sáng là \(\lambda_1\) và \(\lambda_3\) trùng nhau.
Bội chung nhỏ nhất giữa 56 và 63 là: \(7\text{×}2^3\text{×}3^2=504\)
Suy ra trong khoảng \(d\) có 0 vân sáng là \(\lambda_2\) và \(\lambda_3\) trùng nhau.
Vậy tổng số vân sáng bên trong khoảng d là:
\(\frac{d}{i_1}-1+\frac{d}{i_2}-1+\frac{d}{i_3}-1-2-3-0\)
\(=\frac{504}{42}-1+\frac{504}{56}-1+\frac{504}{63}-1-2-3-0\)
\(=21\) (vân sáng )
----> chọn A
ta có:
\(i_1:i_2:i_3=\lambda_1:\lambda_2:\lambda_3=6:8:9\)
Bội chung nhỏ nhất là 72
Như vậy vân 12 của bức xạ 1 trùng với 9 của bx2 và 8 của bx3
trong khoảng này thì bx2 và và bx3 không trùng cực đại vì 8 và 9 nguyên tố cùng nhau
cực đại số 4 và số 8 của bx1 trùng với cực đại số 3 và 6 của bx2
cực đại số 3 ,6 và số 9 của bx1 trùng với cực đại số 2; 4và 6 của bx2
Số cực đại nhìn thấy là
11+8+7-2-3=21
\(\rightarrow chọn.A\)
Bạn tham khảo một bài hoàn toàn tương tự như vậy nhé
Câu hỏi của trần thị phương thảo - Học và thi online với HOC24
Khi các vân sáng trùng nhau: \(k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)
k10,4 = k20,5 = k30,6 \(\Leftrightarrow\) 4k1 = 5k2 = 6k3
BSCNN(4,5,6) = 60
\(\Rightarrow\) k1 = 15 ; k2 = 12 ; k3 = 10 Bậc 15 của \(\lambda_1\) trùng bậc 12 của \(\lambda_2\) trùng với bậc 10 của \(\lambda_3\)
Trong khoảng giữa phải có: Tổng số VS tính toán = 14 + 11 + 9 = 34
Ta xẽ lập tỉ số cho tới khi k1 = 15 ; k2 = 12 ; k3 = 10
- Với cặp \(\lambda_1;\lambda_2:\) \(\frac{k_1}{k_2}=\frac{\lambda_1}{\lambda_2}=\frac{5}{4}=\frac{10}{8}=\frac{15}{12}\)
Như vậy: Trên đoạn từ vân VSTT đến k1 = 15 ; k2 = 12 thì có tất cả 4 vị trí trùng nhau
Vị trí 1: VSTT
Vị trí 2: k1 = 5 ; k2 = 4
Vị trí 3: k1 = 10 ; k2 = 8 => Trong khoảng giữa có 2 vị trí trùng nhau.
Vị trí 4: k1 = 15 ; k2 = 12
- Với cặp\(\lambda_2;\lambda_3:\) \(\frac{k_2}{k_3}=\frac{\lambda_3}{\lambda_2}=\frac{6}{5}=\frac{12}{10}\)
Như vậy: Trên đoạn từ vân VSTT đến k2 = 12 ; k3 = 10 thì có tất cả 3 vị trí trùng nhau
Vị trí 1: VSTT
Vị trí 2: k2 = 6 ; k3 = 5 \(\Rightarrow\) Trong khoảng giữa có 1 vị trí trùng nhau.
Vị trí 3: k2 = 12 ; k3 = 10
- Với cặp \(\lambda_1;\lambda_3:\) \(\frac{k_1}{k_3}=\frac{\lambda_3}{\lambda_1}=\frac{3}{2}=\frac{6}{4}=\frac{9}{6}=\frac{12}{8}=\frac{15}{10}\)
Như vậy: Trên đoạn từ vân VSTT đến k1 = 15 ; k3 = 10 thì có tất cả 6 vị trí trùng nhau
Vị trí 1: VSTT
Vị trí 2: k1 = 3 ; k3 = 2
Vị trí 3: k1 = 6 ; k3 = 4
Vị trí 4: k1 = 9 ; k3 = 6 \(\Rightarrow\) Trong khoảng giữa có 4 vị trí trùng nhau.
Vị trí 5: k1 = 12 ; k3 = 8
Vị trí 6: k1 = 15 ; k3 = 10
Vậy tất cả có 2 + 1 +4 = 7 vị trí trùng nhau của các bức xạ.
Số VS quan sát được = Tổng số VS tính toán – Số vị trí trùng nhau = 34 – 7 = 27 vân sáng.
\(\rightarrow D\)
Khoảng cách giữa 2 vân sáng gần nhau nhất cùng màu với vân trung tâm: \(x_T=k_1i_1=k_2i_2\)(1)
\(\Rightarrow k_1\lambda_1=k_2\lambda_2\Rightarrow\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{0,6}{0,48}=\frac{5}{4}\)
\(\Rightarrow\begin{cases}k_1=5\\k_2=4\end{cases}\)
Thay vào (1) \(x_T=5i_1=4i_2\)
Như vậy tại vị trí 2 vân trùng nhau kể từ vân trung tâm có vân bậc 5 của \(\lambda_1\) và bậc 4 của \(\lambda_2\)
Do đó, giữa 2 vân sáng cùng màu vân trung tâm có: 4 vân sáng λ1 và 3 vân sáng λ2.
Đáp án A.
Xây dựng từ phần lý thuyết, hiệu đường đi của ánh sáng từ hai khe đến vân tối thứ \(k+1\) là
\(d_2-d_1 = (k+0,5)\lambda.\)
Áp dụng với \(k+1 = 3\) => \(d_2-d_1 = (2+0,5)\lambda = 2,5 \lambda.\)
Giữa hai vân sáng gần nhau nhất cùng màu với vân trung tâm có 8 vân sáng màu lục tức là khoảng cách đó là \(\Delta x _{min}= 9i_{lục}.\)
=> \(9i_{lục}= k_2 i_{đỏ}=> 9\lambda_{lục}= k_2 \lambda_{đỏ}\)
=> \(\lambda_{lục} = \frac{k_2 \lambda_{đỏ}}{9}.\ \ (1)\)
Mà \(500 n m \leq \lambda_{lục} \leq 575nm.\)
Thay (1) vào <=> \(500 n m \leq \frac{k_2 \lambda_{đỏ}}{9} \leq 575nm.\)
<=> \(\frac{500.9}{720} \leq k_2 \leq \frac{575.9}{720}\)
<=> \(6,25 \leq k_2 \leq 7,1875\)
=> \(k_2 = 7=> (1): \lambda_{lục} = 560nm.\)
720nm = 0,72 μm
giữa 2 vân sáng gần nhau nhất và cùng màu vs vân sáng trung tâm có 8 vân sáng màu lục => Tại vị trí trùng đó là VS bậc 9 của λlục
Tại VT trùng nhau: x_kđỏ = x_9lục
<=> kđỏ.λđỏ = 9.λlục
<=> kđỏ/9 = λlục/λđỏ = λ/0,72
=> λ = (0,72.kđỏ)/9 = 0,08.kđỏ (*)
0,5 ≤ λ = 0,08.kđỏ ≤ 0,575 μm
6,25 ≤ kđỏ ≤ 7,1875
=> kđỏ = 7
thế vào (*) λ = 0,56 (μm) = 560nm
đáp án : D
Đáp án C
Ba vân trùng nhau nên ta có x1 = x2 = x3
Vậy tại vị trí trùng nhau đầu tiên của 3 bức xạ tính từ vân trung tâm thì đó là vân sáng bậc 15 của λ1, vân sáng bậc 12 của λ2 và vân sáng bậc 10 của λ3.
Xét các vị trí trùng nhau của λ1 và λ2:
Vậy với các giá trị của k1 chia hết cho 5 thì là giá trị của k ứng với vị trí trùng nhau của λ1 và λ2 => có 2 vân trùng.
Xét các vị trí trùng nhau của λ1 và λ3:
Vậy với các giá trị của k1 chia hết cho 3 thì là giá trị của k ứng với vị trí trùng nhau của λ1 và λ3 => có 4 vân trùng.
Xét các vị trí trùng nhau của λ3 và λ2:
Vậy với các giá trị của k2 chia hết cho 6 thì là giá trị của k ứng với vị trí trùng nhau của λ3 và λ2 => có 1 vân trùng.
Vậy số vân sáng quan sát được trong khoảng giữa hai vân trùng nhau của 3 bức xạ là: 14 + 11 + 9 – 2 – 4 – 1 = 27 vân sáng.
Điều kiện vân trùng: \(k_1.\lambda_1=k_2.\lambda_2\)
\(\Rightarrow \lambda_2=\dfrac{k_1\lambda_1}{k_2}\)
Mặt khác \(k_1-1+k_2-1=9 ==> k_1+k_2=11 ==> k_1=11-k_2
\)
Ta có: \(0,38 \le \lambda_2 \le 0,76\)
==> \(0,38 \le \frac{11.\lambda_1}{k_2} - \lambda_1 \le 0,76\)
==> \(0,38 \le \frac{4,851}{k_2}-0,4410 \le 0,76\)
==> \(k_2<5,9 ; k_2>4,03 ==> k=5 ==> \lambda_2=6.\lambda_1/5=5292A^o\)
Đáp án: A
+ Điều kiện vân sáng của λ1 trùng với vân sáng của λ2:
k2/k1 = λ1/λ2 = 0,42/0,56 = a/b = 3/4
+) Điều kiện vân sáng của λ1 trùng với vân sáng của λ3:
k3/k1 = λ1/λ3 = 0,42/0,63 = c/d = 2/3
+) Điều kiện vân sáng của λ2 trùng với vân sáng của λ3:
k3/k2 = λ2/λ3 = 0,56/0,63 = e/f = 8/9
→ Khoảng vân trùng i = b.d.λ1 = a.d.λ2 = b.c.λ3
hay i = 12λ1 = 9λ2 = 8λ3
Trong khoảng giữa hai vân sáng liên tiếp có màu giống màu vân trung tâm, có 2 vị trí vân sáng bức xạ 1 trùng với bức xạ 2, 3 vị trí vân sáng bức xạ 1 trùng với bức xạ 3.
=> Số vân sáng quan sát được là N = (12 – 1)+ (9 – 1) + (8 – 1) – (2 + 3) = 21 vân
(2 vân sáng trùng nhau tính là 1)