Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khoảng cách giữa 9 vân sáng liên tiếp là
\((9-1)i =3,6mm=> i = 0,45mm.\)
Khoảng cách giữa hai khe hẹp là
\( a = \frac{\lambda D}{i}=\frac{0,6.0,9}{0,45}=1,2mm.\)
Ta có:
\(i=\frac{\lambda D}{a}\)
\(i^{'}=i+0,15\Rightarrow 0,15.10^{-3}=i'-i=\frac{\lambda (D^{'}-D)}{a}\)
Bước sóng: \(\lambda =\frac{a.0,15.10^{-3}}{D{'}-D}=\frac{2.10^{-3}.15.10^{-5}}{0,4}=0,75\mu m\)
Lưu ý: \(\Delta i=\dfrac{\lambda.\Delta D}{a}\)
\( i = \frac{\lambda D}{a}= 0,64 mm.\)
Số vân tối quan sát được trên màn là
\(N_t = 2.[\frac{L}{2i}+0,5]=2.9=18.\)
+ Xét tỉ số: \(\frac{x_M}{i}=3\)
\(\Rightarrow\) Tại M là vân sáng bậc 3.
Trong thí nghiệm Iâng về giao thoa ánh sáng, hai khe hẹp cách nhau một khoảng 0,5 mm, khoảng cách từ mặt phẳng chứa hai khe đến màn quan sát là 1,5 m. Hai khe được chiếu bằng bức xạ có bước sóng 0,6 μmμm. Trên màn thu được hình ảnh giao thoa. Tại điểm M trên màn cách vân sáng trung tâm một khoảng 5,4 mm có
A. vân sáng bậc 2
B. vân sáng bậc 4
C. vân sáng bậc 3
D. vân sáng thứ 4
Tịnh tiến màn quan sát lại gần mặt phẳng chưa hai khe 25 cm tức là \(D' = D-0,25.\)
\(i_1 = \frac{\lambda D}{a}\\
i_2 =\frac{\lambda (D-0,25)}{a} \)=> \(\frac{i}{i'}= \frac{D}{D-0,25}= \frac{5}{4}\)
=> \(D = 5.0,25 = 1,25m.\)
=> \(\lambda = \frac{i.a}{D}= 0,48 \mu m.\)
Chú ý là giữ nguyên đơn vị i (mm); a (mm) ; D (m) thì đơn vị bước sóng \(\lambda (\mu m)\).
\(i = \frac{\lambda D}{a}=\frac{0,5.2}{0,5}= 2mm.\)
Số vân sáng trên màn quan sát là
\(N_s= 2.[\frac{L}{2i}]+1 =2.6+1 = 13.\)
Khoảng cách giữa 7 vân sáng liên tiếp là
\((7-1)i = 2,4mm=> i = 0,4mm.\)
\(\lambda = \frac{ia}{D}=\frac{0,4.2}{1,2}=0,67\mu m. \)
Chọn đáp án B
i = λ D a = 1 , 5 m m ⇒ N s = 2 L 2 i + 1 = 2 12 , 5 2.1 , 5 + 1 = 2 4 , 17 + 1 = 9 N t = N s − 1 = 8 ⇒ N t + N s = 17