Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương pháp: áp dụng công thức tính khoảng vân và công thức xác định vị trí vân sáng
Cách giải: Khoảng vân là: i = λ D a = 1 m m
Vân sáng có vị trí x = ki
Vân tối có vị trí (k’ + 1/2) i
Vậy khoảng cách từ vân sáng bậc 1 và vân tối thứ 3 ở cùng 1 phía so với vân trung tâm là
Đáp án D
Tóm tắt:
a = \(10^{-3}m\)
D = \(1,25m\)
\(\lambda_1=0,64\mu m\)
\(\lambda_2=0,48\mu m\)
\(\Delta x=?\)
Giải:
Khi vân sáng trùng nhau:
\(k_1\lambda_1=k_2\lambda_2\Rightarrow\)\(\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{0,48}{0,64}=\frac{3}{4}\)
Vậy: \(k_1=3;k_2=4\)\(\Rightarrow\Delta x=3i_1=3.\frac{\lambda_1.D}{a}=3.\)\(\frac{0,64.10^{-6}.1,25}{10^{-3}}=2,4.10^{-3}m=2,4mm\)
\(\rightarrow D\)
Vân sáng bậc 4 cách vân trung tâm là
\(x_ 4 = 4.i = 4.\frac{\lambda D}{a} = 3,2mm.\)
Chú ý nếu giữ nguyênđơn vị của \(\lambda (\mu m)\), D(m), a(mm) thì khi đó kết quả cho \(x\) ra đơn vị là mm.
Đáp án A
+ Khoảng cách giữa vân sáng bậc hai đến vân sáng bậc năm là
Δ x = 3 i = 3 D λ a = 3 1 , 5.0 , 6.10 − 6 0 , 2.10 − 3 = 13 , 5 mm
\(i = \frac{\lambda D}{a}=\frac{0,5.2}{0,5}= 2mm.\)
Số vân sáng trên màn quan sát là
\(N_s= 2.[\frac{L}{2i}]+1 =2.6+1 = 13.\)
Đáp án D
Khoảng vân là:
Vân sáng có vị trí x = ki
Vân tối có vị trí (k’ + 1/2) i
Vậy khoảng cách từ vân sáng bậc 1 và vân tối thứ 3 ở cùng 1 phía so với vân trung tâm là :