Trong thí nghiệm giao thoa ánh sáng với khe Y-âng, khoảng cách giữa hai khe là 2mm, kho...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

O
ongtho
Giáo viên
23 tháng 1 2016

Tại vị trí cách vân trung tâm 3 mm có vân sáng bậc \(k\) của bức xạ \(\lambda\) khi 

\(x=3mm = ki =k\frac{\lambda D}{a}.\)

=> \(\lambda = \frac{3.a}{D k}.(1)\)

Mặt khác : \(0,38 \mu m \leq \lambda \leq 0,76 \mu m.\)

<=> \(0,38 \mu m \leq \frac{3a}{kD} \leq 0,76 \mu m.\)

<=> \(\frac{3.0,8}{0,76.2} \leq k \leq \frac{3.0,8}{0,38.2} \)

Giữ nguyên đơn vị của \(x = 3mm; a = 0,8mm;\lambda = 0,76 \mu m;0,38 \mu m; D= 2m\)

<=> \(1,57 \leq k \leq 3,15.\)

<=> \(k = 2,3.\)

Thay vào (1) ta thu được hai bước sóng là \(\lambda_1 = \frac{3.0,8}{2.2}=0,6\mu m.\)

                                                                    \(\lambda_2 = \frac{3.0,8}{3.2}=0,4\mu m.\)

                                   

 

22 tháng 1 2015

Tại điểm M  là vân sáng nên \(x_M=ki=k\frac{\lambda D}{a}\)

\(\lambda=\frac{x_Ma}{kD}=\frac{4,2.0,5}{k.1,4}=\frac{1,5}{k}\)

Theo giả thiết: \(0,38\le\lambda\le0,76\)

\(\Rightarrow0,38\le\frac{1,5}{k}\le0,76\)

\(\Rightarrow1,97\le k\le3,94\)

k nguyên nên k = 2,3.

Như vậy, tại M có 2 bước sóng cho vân sáng, đáp án là A.

24 tháng 7 2016

iVJGNKq.png

 

4 tháng 6 2016
+ Khoảng vân: \(i=\frac{\lambda D}{a}=1,8\left(mm\right)\)
+ Xét tỉ số: \(\frac{x_M}{i}=3\) 
\(\Rightarrow\) Tại M là vân sáng bậc 3.
4 tháng 6 2016

 

Trong thí nghiệm Iâng về giao thoa ánh sáng, hai khe hẹp cách nhau một khoảng 0,5 mm, khoảng cách từ mặt phẳng chứa hai khe đến màn quan sát là 1,5 m. Hai khe được chiếu bằng bức xạ có bước sóng 0,6 μmμm. Trên màn thu được hình ảnh giao thoa. Tại điểm M trên màn cách vân sáng trung tâm một khoảng 5,4 mm có 

 

A.  vân sáng bậc 2

B. vân sáng bậc 4

C. vân sáng bậc 3 

D. vân sáng thứ 4

29 tháng 4 2016

Tóm tắt:

a = \(10^{-3}m\)

D = \(1,25m\)

\(\lambda_1=0,64\mu m\)

\(\lambda_2=0,48\mu m\)

\(\Delta x=?\)

Giải:

Khi vân sáng trùng nhau:  

\(k_1\lambda_1=k_2\lambda_2\Rightarrow\)\(\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{0,48}{0,64}=\frac{3}{4}\)

Vậy: \(k_1=3;k_2=4\)\(\Rightarrow\Delta x=3i_1=3.\frac{\lambda_1.D}{a}=3.\)\(\frac{0,64.10^{-6}.1,25}{10^{-3}}=2,4.10^{-3}m=2,4mm\)

\(\rightarrow D\)

18 tháng 1 2016

Tịnh tiến màn quan sát lại gần mặt phẳng chưa hai khe 25 cm tức là \(D' = D-0,25.\)
\(i_1 = \frac{\lambda D}{a}\\ i_2 =\frac{\lambda (D-0,25)}{a} \)=> \(\frac{i}{i'}= \frac{D}{D-0,25}= \frac{5}{4}\)

                       => \(D = 5.0,25 = 1,25m.\)

                      => \(\lambda = \frac{i.a}{D}= 0,48 \mu m.\)

Chú ý là giữ nguyên đơn vị i (mm); a (mm) ; D (m) thì đơn vị bước sóng \(\lambda (\mu m)\).

28 tháng 2 2018

Em vẫn chưa hiểu cho lắm ạ. Đầu bài không cho D thì tính lần lượt ra 5/4 kiểu gì ạ? Mong a/c giải thích giúp e với ạ.

O
ongtho
Giáo viên
1 tháng 2 2016

\( i = \frac{\lambda D}{a}= 0,64 mm.\)

Số vân tối quan sát được trên màn là 

\(N_t = 2.[\frac{L}{2i}+0,5]=2.9=18.\)

4 tháng 2 2016

d

30 tháng 4 2016

Tóm tắt:

\(a=10^{-3}m\)

\(D=0,5m\)

\(\lambda_1=0,64\mu m\)

\(\lambda_2=0,6\mu m\)

\(\lambda_3=0,54\mu m\)

\(\lambda_4=0,48\mu m\)

\(\Delta x=?\)

Giải:

Khi vân sáng trùng nhau:  

\(k_1\lambda_1=\)\(k_2\lambda_2=\)\(k_3\lambda_3=\)\(k_4\lambda_4\)  \(\Leftrightarrow k_10,64\)\(=k_20,6\)\(=\)\(k_30,54\)\(=k_40,48\)

\(\Leftrightarrow\)\(k_164=k_260=k_354=k_448\)  \(\Leftrightarrow\) \(k_164=k_260=k_354=k_448\)

\(\Leftrightarrow k_132=k_230=k_327=k_424\)

BSCNN( 32;30;27;24 ) = 4320

\(k_1=\frac{4320}{32}=135\)

\(k_2=\frac{4320}{30}=144\)

\(k_3=\frac{4320}{27}=160\)

\(k_4=\frac{4320}{24}=180\)

Vậy \(\Delta x=135i_1=144i_2=160i_3=180i_4\)\(=0,0432m=4,32cm\)

\(\rightarrow D\)


12 tháng 6 2016

\(i_1=\dfrac{\lambda_1.D}{a}=1,2mm\)

Số vân sáng  của i1 là: \(|\dfrac{24}{2.1,2}|.2+1=21\)

Số vân sáng của i2 là: \(33+5-21=17\)

\(\Rightarrow i_1=1,5mm\)

\(\Rightarrow \lambda_2=0,75\mu m\)

24 tháng 1 2019

Có thể làm rõ hơn ko ạ???

3 tháng 5 2016

Khi các vân sáng trùng nhau:   \(k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)

                                                  k10,4 = k20,5 = k30,6 \(\Leftrightarrow\) 4k1 = 5k2 = 6k3 

BSCNN(4,5,6) = 60

\(\Rightarrow\) k1 = 15 ; k2 = 12 ; k3 = 10 Bậc 15 của \(\lambda_1\) trùng bậc 12 của \(\lambda_2\) trùng với bậc 10 của \(\lambda_3\)

Trong khoảng giữa phải có:  Tổng số VS tính toán = 14 + 11 + 9 = 34

Ta xẽ lập tỉ số cho tới khi   k1 = 15 ; k2 = 12 ; k3 = 10

  - Với cặp \(\lambda_1;\lambda_2:\) \(\frac{k_1}{k_2}=\frac{\lambda_1}{\lambda_2}=\frac{5}{4}=\frac{10}{8}=\frac{15}{12}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k1 = 15 ; k2 = 12  thì có tất cả 4 vị trí trùng nhau

Vị trí 1: VSTT  

Vị trí 2:  k1 = 5 ; k2 = 4

Vị trí 3:  k1 = 10 ; k2 = 8                    => Trong khoảng giữa có 2 vị trí trùng nhau.

Vị trí 4:  k1 = 15 ; k2 = 12

  - Với cặp\(\lambda_2;\lambda_3:\)  \(\frac{k_2}{k_3}=\frac{\lambda_3}{\lambda_2}=\frac{6}{5}=\frac{12}{10}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k2 = 12 ; k3 = 10  thì có tất cả 3 vị trí trùng nhau

Vị trí 1: VSTT  

Vị trí 2:  k2 = 6 ; k3 = 5                     \(\Rightarrow\) Trong khoảng giữa có 1 vị trí trùng nhau.

Vị trí 3:  k2 = 12 ; k3 = 10

- Với cặp \(\lambda_1;\lambda_3:\)    \(\frac{k_1}{k_3}=\frac{\lambda_3}{\lambda_1}=\frac{3}{2}=\frac{6}{4}=\frac{9}{6}=\frac{12}{8}=\frac{15}{10}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k1 = 15 ; k3 = 10  thì có tất cả 6 vị trí trùng nhau

Vị trí 1: VSTT 

Vị trí 2:  k1 = 3   ;  k3 = 2

Vị trí 3:  k1 = 6   ;  k3 = 4

Vị trí 4:  k1 = 9   ;  k3 = 6                                     \(\Rightarrow\) Trong khoảng giữa có 4 vị trí trùng nhau.

Vị trí 5:  k1 = 12 ;  k3 = 8

Vị trí 6:  k1 = 15 ;  k3 = 10

Vậy tất cả có 2 + 1 +4 = 7 vị trí trùng nhau của các bức xạ.

Số VS quan sát được = Tổng số VS tính toán – Số vị trí trùng nhau       = 34 – 7 = 27 vân sáng.  

\(\rightarrow D\)   

3 tháng 5 2016

ok