K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐỀ BÀI KO THUYẾT PHỤC

16 tháng 2 2022

Chia tam giác đó thành 16 tam giác đều bằng nhau cạnh \(\dfrac{1}{4}\) Theo Dirichlet tồn tại 2 điểm cùng thuộc 1 tam giác và khoảng cách giữa chúng không lớn hơn \(\dfrac{1}{4}\)

16 tháng 2 2022

cảm ơn bn nhiều nha 

17 tháng 4 2018

Giả sử tam giác đã cho là ABC . Gọi M,N,P là trung điểm của các cạnh  BC,CA,AB và G là trọng tâm của tam giác . Lấy \(A_0,B_0,C_0,X,Y,Z,T,S,R\)lần lượt là các trung điểm của các đoạn thẳng GA,GB,GC,BM,CM,CN,AN,AP,BP . Tam giác ABC chia thành 12 phần = nhau

Theo nguyên lý Dirichlet , trong số 13 điểm đã cho tồn tại hai điểm cùng thuộc 1 phần . Do cạnh của tam giác ABC = 6cm  nên \(GA_0=AA_0\)\(GB_0=BB_0=CC_0=GC_0=\sqrt{3cm}\)

29 tháng 3 2016

Nguyên lí Đi dép lê à? Ngu cái nài nhất

13 tháng 1 2022

Xét điểm thứ nhất (A)(A) nối với 5 điểm còn lại (B,C,D,E,FB,C,D,E,F) tạo thành 5 đoạn thẳng

Vì mỗi đoạn thẳng được tô chỉ màu đỏ hoặc xanh, nên theo nguyên lí Dirichlet có ít nhất ba trong năm đoạn nói trên cùng màu. Giả sử 3 đoạn cùng màu là đoạn AB,AC,AD có 2 trường hợp:

Đoạn AB,AC,ADAB,AC,AD màu xanh tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu xanh

Nếu ngược lại 3 đoạn màu đỏ thì tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu đỏ.

Vậy ta có điều phải chứng minh.