K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2021

Link hình: file:///C:/Users/THAOCAT/Pictures/Screenshots/Screenshot%20(1224).png

Áp dụng định lý Menelaus cho bộ ba điểm (K,E,D) thằng hàng của \(\Delta\)AMC, ta được: \(\frac{KM}{KC}.\frac{EC}{EA}.\frac{DA}{DM}=1\Rightarrow\frac{KM}{KC}=\frac{EA}{EC}.\frac{DM}{DA}\)(1)

Tương tự đối với bộ ba điểm (H,D,F) thẳng hàng trong \(\Delta\)AMB, ta được: \(\frac{HB}{HM}.\frac{DM}{DA}.\frac{FA}{FB}=1\Rightarrow\frac{HB}{HM}=\frac{FB}{FA}.\frac{DA}{DM}\)(2)

Tiếp tục áp dụng định lý Ceva cho ba đường thẳng AD, BE, CF đồng quy tại M trong \(\Delta\)ABC, ta có: \(\frac{DC}{DB}.\frac{FB}{FA}.\frac{EA}{EC}=1\Rightarrow\frac{DC}{DB}=\frac{FA}{FB}.\frac{EC}{EA}\)(3)

Từ (1), (2), (3) suy ra \(\frac{KM}{KC}.\frac{HB}{HM}.\frac{DC}{DB}=1\)

\(\Delta\)BMC có \(\frac{KM}{KC}.\frac{HB}{HM}.\frac{DC}{DB}=1\)nên ba đường thẳng MD, BK, CH đồng quy (định lý Ceva đảo)

Vậy AD, BK và CH đồng quy (đpcm)

4 tháng 6 2019

Xét bài toán (II): Cho tam giác A'B'C' điểm D' thuộc cạnh BC sao cho \(\frac{A'B'}{A'C'}=\frac{D'B'}{D'C'}\).

Chứng minh: A'D' là phân giác góc A' của tam giác A'B'C'

A' C' D' B' E'

Trên tia đối tia D'A' lấy điểm E' sao cho B'E'=B'A' 

=> \(\Delta B'E'A'\)cân tại B'

=> \(\widehat{B'A'D'}=\widehat{B'E'D'}\)(1)

Xét tam giác: A'D'C' và tam giác E'D'B' có: \(\frac{E'B'}{A'C'}=\frac{D'B'}{D'C'}\)và \(\widehat{C'D'A'}=\widehat{B'D'E'}\)

=> Hai tam giác trên đồng dạng

=> \(\widehat{C'A'D'}=\widehat{B'E'D'}\)(2)

Từ (1), (2) => \(\widehat{C'A'D'}=\widehat{B'A'D'}\)=> A'D' là phân giác góc A của tam giác A'B'C'

Quay lại bài toán của bạn:

A B C D E F M N H

Xét tam giác EFD có: M thuộc FD và \(\frac{ED}{EF}=\frac{MD}{MF}\)

theo bài toán (II)  đã chứng minh ở trên ta có: EM là phân giác góc \(\widehat{FED}\)

tương tự FN là phân giác góc \(\widehat{DFE}\)

mà EM cắt FN tại H

=> H là giao ba đường phân giác trong tam giác DEF

=> DA là phân giác trong góc FDE

Như vậy cần chứng minh H là trực tâm của tam giác ABC

20 tháng 6 2019

Bài này có thể phải dùng tới định lí Menenaus hoặc Ceva. Em đã được học về các định lý này chưa?

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với...
Đọc tiếp

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.

Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.

Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:

a, tam giác GPI và tam giác GNC đồng dạng.

b, IC vuông góc với GI.

Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:

a,Tam giác IHE và tam giác BHA đồng dạng.

b, Tam giác BHI và tam giác AHE đồng dạng.

c, AE vuông góc với BI.

LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘

 

0
3 tháng 6 2019

Các bạn giúp mik với

3 tháng 6 2019

GIÚP mik đi mik là thành viên mới mà

28 tháng 2 2020

bài 3

A B C D E M N K K' x I O

Gọi giao điểm của EM với AC là K' ( K' \(\in\)AC )

Ta sẽ chứng minh K' \(\equiv\)

Thật vậy, gọi giao điểm AC và MN là O ; K'N cắt DC tại I 

dễ thấy O là trung điểm MN

do MN // EI \(\Rightarrow\frac{MO}{EC}=\frac{K'O}{K'C}=\frac{ON}{CI}\)\(\Rightarrow EC=CI\)

\(\Delta NEI\)có NC là đường cao vừa là trung tuyến nên cân tại N

\(\Rightarrow\)NC là đường phân giác của \(\widehat{ENI}\)

Mà \(\widehat{K'NE}+\widehat{ENI}=180^o\) có \(NM\perp NC\)nên NM là  đường phân giác \(\widehat{K'NE}\)( 1 )

mặt khác : NM là đường phân giác \(\widehat{KNE}\) ( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(K'\equiv K\)hay A,K,C thẳng hàng

28 tháng 2 2020

A B C H M E F D

Trên tia đối tia HC lấy D sao cho HD = HC

Tứ giác DECF có DH = HC ; EH = HF nên là hình bình hành

\(\Rightarrow\)DE // CF 

\(\Rightarrow\)DE \(\perp\)CH ; BE \(\perp\)DH

\(\Rightarrow\)E là trực tâm tam giác DBH \(\Rightarrow HE\perp BD\)

Xét \(\Delta DBC\)có DH = HC ; BM = MC nên MH là đường trung bình 

\(\Rightarrow\)MH // BD

\(\Rightarrow\)MH \(\perp EF\)

22 tháng 3 2021

undefined