K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2023

a)

Ta có:

     G là trọng tâm của tam giác ABC (giao điểm của ba đường trung tuyến);

     H là trực tâm của tam giác ABC (giao điểm của ba đường cao);

     I là giao điểm của ba đường phân giác của tam giác ABC;

     O là giao điểm của ba đường trung trực của tam giác ABC (Đường trung trực đi qua trung điểm của cạnh và vuông góc với cạnh tại trung điểm đó).

Mà tam giác ABC đều nên trong tam giác ABC đường trung tuyến đồng thời là đường cao và là đường phân giác.

Vậy bốn điểm G, H, I, O trùng nhau hay nếu tam giác ABC đều thì bốn điểm G, H, I, O trùng nhau.

b) 

 

Giả sử trong tam giác ABC có hai điểm trùng nhau là H (trực tâm của tam giác) và I (giao của ba đường phân giác).

Hay AD, BE, CF vừa là đường cao, vừa là đường phân giác của tam giác ABC.

Xét tam giác ADB và tam giác ADC có:

\(\widehat {BAD} = \widehat {CAD}\) ( vì AD là tia phân giác của góc BAC)

AD chung;

\(\widehat {ADB} = \widehat {ADC}(=90^0)\) (vì \(AD \bot BC\));

Vậy \(\Delta ADB = \Delta ADC\)(g.c.g). Suy ra: AB = AC( 2 cạnh tương ứng). (1)

Tương tự ta có: \(\Delta AEB = \Delta CEB\)(c.g.c). Suy ra: AB = BC ( 2 cạnh tương ứng). (2)

Từ (1) và (2) suy ra: AB = BC = AC.

Vậy tam giác ABC đều hay nếu tam giác ABC có hai điểm trong bốn điểm G, H, I, O trùng nhau thì tam giác ABC là tam giác đều.

19 tháng 9 2023

a) Kẻ đường trung trực của đoạn thẳng BC, cắt BC tại D

Ta có: Tam giác ABC cân nên AB = AC

\( \Rightarrow A\)thuộc đường trung trực của cạnh BC (t/c)

\( \Rightarrow AD\)là đường trung trực của BC.

Xét \(\Delta ABD\)và \(\Delta ACD\)có:

AB = AC (gt)

BD = CD (gt)

AD: cạnh chung

\( \Rightarrow \Delta ABD = \Delta ACD\left( {c - c - c} \right)\)

\( \Rightarrow \widehat {BAD} = \widehat {CAD}\)

\( \Rightarrow \)AD là tia phân giác góc BAC.

Vậy tam giác ABC cân tại A, đường trung trực của cạnh BC là đường cao và cũng là đường phân giác xuất phát từ đỉnh A của tam giác đó.

b)

Ta có: Điểm cách đều ba đỉnh của tam giác là giao điểm ba đường trung trực của tam giác đó.

Tam giác ABC đều nên AB = BC = CA

Tam giác ABC cân tại A có AN là đường trung tuyến

\( \Rightarrow \) AN là đường phân giác xuất phát từ đỉnh A (cm ở ý a)

Tương tự: BP, CM lần lượt là đường phân giác xuất phát từ B và C của tam giác ABC

Mà AN cắt BP tại G

\( \Rightarrow G\) là giao điểm ba đường phân giác của tam giác ABC

\( \Rightarrow G\) cách đều ba cạnh của tam giác ABC (Tính chất

`7,`

`@` Theo tính chất điểm đồng quy của `3` đường trung trực (cách đều các đỉnh của tam giác)

`-> D`

`8,`

`-` Giao điểm của `3` đường cao là trực tâm

`-> D.`

`10,`

`@` Theo định lý giữa đường vuông góc và đường xiên (Trong các đường xiên và đường vuông góc kẻ từ 1 điểm đến 1 đường thẳng thì đường vuông góc là đường ngắn nhất)

`-> C`

1 tháng 5 2023

cảm ơn bạn nhiều 

19 tháng 5 2016

A B C M G H N P

19 tháng 5 2016

Hình này đc Hông 

1 tháng 8 2018

Ta có AA′⊥ AB′ vì chúng là hai tia phân giác của hai góc kề bù. Tương tự AA′⊥ AC′. Vì qua A chỉ có một đường vuông góc với AA' nên ba điểm B', A, C' thẳng hàng và AA′⊥ B′C′, hay A'A là một đường cao của tam giác A'B'C'. Hoàn toàn tương tự ta chứng minh được BB' và CC' là hai đường cao của tam giác A'B'C'.

Mặt khác theo cách chứng minh của bài 9.5 ta có AA', BB', CC' là ba tia phân giác của các góc A, B, C của tam giác ABC. Từ đó suy ra giao điểm của ba đường phân giác của tam giác ABC là trực tâm của tam giác A'B'C'.

13 tháng 10 2018

1/ Cho tam giác ABC vuông tại A và góc C bằng 30 độ . Vẽ trung trực của AC , cắt AC tại H và BC tại D , nối ADa)Chứng minh tam giác ABD đều(sẵn vẽ hình giúp mình nhé)b)Kẻ phân giác của góc B cắt AD tại K và cắt DH kéo dài I. CM: I là tâm đường tròn đi qua ba đỉnh của tam giác ADC c)Vẽ IE vuông góc với DC; IF vuông góc với AB kéo dài. CM:IF=IE=IK2/ Cho tam giác ABC vẽ AH vuông góc với BC. Gọi I và K lần...
Đọc tiếp

1/ Cho tam giác ABC vuông tại A và góc C bằng 30 độ . Vẽ trung trực của AC , cắt AC tại H và BC tại D , nối AD

a)Chứng minh tam giác ABD đều(sẵn vẽ hình giúp mình nhé)

b)Kẻ phân giác của góc B cắt AD tại K và cắt DH kéo dài I. CM: I là tâm đường tròn đi qua ba đỉnh của tam giác ADC 

c)Vẽ IE vuông góc với DC; IF vuông góc với AB kéo dài. CM:IF=IE=IK

2/ Cho tam giác ABC vẽ AH vuông góc với BC. Gọi I và K lần lượt là hình chiếu của H lên AB và AC. Kéo dài HI một đoạn ID=HI và kéo dài HK một đoạn KE=HK. CM:A nằm trên trung trực của DE( vẽ hình giúp mình nhé các bạn )

3/Cho tam giác ABC cân tại A,M và N là hai điểm tương ứng thuộc hai cạnh AB và AC sao cho BM=AN. Gọi O là điểm cách đều ba đỉnh A,B,C .CM: Ocách đều 2 điểm M và N

4/Trên cạnh AB,BC,AC của tam giác đều ABC . Lấy các điểm theo thứ tự M,N,P sao cho AM=BN=CP.Gọi O là giao điểm của 3 đường trung trực của tam giác ABC . CM: O cũng là giao điểm của ba đường trung trực của tam giác MNP

5/Cho tam giác đều ABC . Trên các cạnh BC,CA,AB lần lượt lất các điểm D,E,F sao cho BD=CE=AF.CM:

a)Tam giác AEF đều

b)Các trung trực của ABC và DEF cùng đi qua một điểm

6/Cho tam giác ABC vuông tại A. Tia phân giác BD và CE cắt nhai tại O 

a)Chứng tỏ O cách đều ba cạnh của tam giác 

b)Từ D và E hạ d8oừng vuông góc xuống BC và cắt CB tại H và K . Tính số đo góc HAk

Mong mọi người vẽ hình và giúp mình giải các bài trên nhé nếu có dài quá thì cho mình xin lỗi

0