Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Nếu trong 5 bạn đó, có bạn rút được thẻ ghi số 5 thì sự kiện “Rút được thẻ ghi số 5” xảy ra.
Nếu cả 5 bạn đều không rút được thẻ ghi số 5 thì sự kiện “Rút được thẻ ghi số 5” không xảy ra.
b) Nếu trong 5 bạn đó, có bạn rút được thẻ ghi số 2 thì sự kiện “Không rút được thẻ ghi số 2” không xảy ra.
Nếu cả 5 bạn đều không rút được thẻ ghi số 2 thì sự kiện “Không rút được thẻ ghi số 2” xảy ra.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta thấy rằng để thắng cuộc người chơi phải bốc được lá bài thứ 21. Mỗi người bốc ít nhất 1 nhiều nhất 3 nên mỗi lượt nhiều nhất là bốc 1+3=4 lá . Do đó người muốn thắng phải bốc được lá bài thứ 21, 17, 13, 9, 5 và 1.
Vậy qui luật để thắng cuộc người ta nên bốc trước và bốc 1 lá bài đầu tiên. Sau đó mỗi lần bốc thì bốc số lá bài bằng hiệu của 4 và số lá bài người kia bốc.
![](https://rs.olm.vn/images/avt/0.png?1311)
Có nhiều cách nối, chẳng hạn:
4.(-25) + 10 : (-2) = -100 + (-5) = -105
(-100) - 5,6 : 8 = -50 -0,7 = -50 + (-0,7) = -50,7
![](https://rs.olm.vn/images/avt/0.png?1311)
Một trò chơi gồm có người quản trò và 3 bạn tham gia với 5 chiếc mủ, trong đó có 2 chiếc màuXANH và 3 chiếc màu ĐỎ. Người quản trò úp lên đầu mỗi người 1 chiếc mủ nhưng không cho biết người đó đội mủ màu gì? 3 bạn có thể nhìn được mủ của nhau. Hai chiếc mủ còn lại được giấu đi không cho 3 người chơi nhìn thấy.
Đến một lúc sau có 1 bạn sẽ đoán được đúng màu chiếc mủ của mình đang đội.
Bạn ấy đội mủ màu gì?
Suy luận ngược từ kết quả: Để An được viên sỏi thứ 100 thì phải cho Bình chỉ bóc được từ viên 90 đến 99. Như vậy An sẽ bóc lần trước đó ở viên thứ 89. Suy dần trở về trước An phải bóc số viên sỏi có số hàng chục bé hơn hàng đơn vị là 1 (01;12;23;34;45;56;67;78;89;100).
An 01
Bình 2….11
An 12
Bình 13…22
An 23
Bình 24…33
An 34
Bình 45…44
An 45
Bình 46…55
An 56
Bình 57…66
An 67
Bình 68…77
An 78
Bình 79…88
An 89
Bình 90……99
An 100
![](https://rs.olm.vn/images/avt/0.png?1311)
Hướng dẫn giải:
Ta giải bài toán bằng cách đi ngược từ dưới lên. Vì tổng số kẹo là 25 nên nếu cuối cùng một người bốc được số lẻ viên kẹo sẽ thua, do người kia sẽ bốc được một số chẵn viên kẹo.
Ta ký hiệu mỗi trạng thái đến lượt An hay Bình đi bằng hai tham số (CL, k), trong đó CL là tính chẵn lẻ của số kẹo mà người chơi đang có, k là số kẹo còn lại trên bàn. Ta viết f(CL, k) = 1 nếu người đi có chiến thuật thắng từ trạng thái này. Trong trường hợp ngược lại f(CL, k) = 0. Mục đích của chúng ta là cần tính F(C, 25). Nếu giá trị này bằng 1 thì An thắng, ngược lại nếu giá trị này bằng 0 thì Bình thắng.
Ví dụ f(C, 1) = 0 vì người đi đang có số chẵn viên kẹo và bắt buộc phải bốc viên kẹo cuối cùng, kết thúc cuộc chơi. f(C, 2) = 1 vì người đi đang có số chẵn viên kẹo và có thể bốc 2 viên kẹo cuối cùng để giành chiến thắng. Cũng như vậy f(C, 3) = 1 (bốc 2). Tương tự như thế thì f(L, 1) = 1 (bốc 1), F(L, 2) = 1 (bốc 1), F(L, 3) = 1 (bốc 3).
Để tính f(C, 4) ta để ý rằng lúc này đối thủ đang có số lẻ viên kẹo. Nếu ta bốc 1, 2 hoặc 3 viên thì sẽ đưa đối thủ đến các trạng thái (L, 3), (L, 2), (L, 1) tương ứng, và đều là các trạng thái thắng của đối thủ. Suy ra f(C, 4) = 0. Với f(L, 4) ta bốc 3 viên, đưa đối thủ vào trạng thái thua (C, 1) và giành chiến thắng.
Tiếp tục, để tính f(C, 5) ta để ý rằng lúc này đối thủ đang có số chẵn viên kẹo. Do đó ta bốc 1 viên và đưa đối thủ vào trạng thái (C, 4) là trạng thái thua, như vậy f(C,5) = 1. Ngược lại từ (L, 5) ta chỉ có thể đưa về (L, 4), (L, 3), (L, 2) là các trạng thái thắng, suy ra f(L, 5) = 0.
Nói tóm lại, một trạng thái là thua nếu mọi cách đi đều đưa về trạng tháng thắng (cho đối thủ), một trạng thái là thắng nếu có một cách đi đưa về trạng thái thua (cho đối thủ). Bằng lý luận này, ta lập được bảng giá trị sau.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
C | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
L | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
C | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
L | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
19 | 20 | 21 | 22 | 23 | 24 | 25 | |||
C | 1 | 0 | 1 | 1 | 1 | 1 | 0 | ||
L | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
Như vậy f(C, 25) = 0, tức là Bình có chiến thuật thắng.
(Đây là bài toán khá khó trong lý thuyết thuật toán và trò chơi).
Ta giải bài toán bằng cách đi ngược từ dưới lên. Vì tổng số kẹo là 25 nên nếu cuối cùng một người bốc được số lẻ viên kẹo sẽ thua, do người kia sẽ bốc được một số chẵn viên kẹo.
Ta ký hiệu mỗi trạng thái đến lượt An hay Bình đi bằng hai tham số (CL, k), trong đó CL là tính chẵn lẻ của số kẹo mà người chơi đang có, k là số kẹo còn lại trên bàn. Ta viết f(CL, k) = 1 nếu người đi có chiến thuật thắng từ trạng thái này. Trong trường hợp ngược lại f(CL, k) = 0. Mục đích của chúng ta là cần tính F(C, 25). Nếu giá trị này bằng 1 thì An thắng, ngược lại nếu giá trị này bằng 0 thì Bình thắng.
Ví dụ f(C, 1) = 0 vì người đi đang có số chẵn viên kẹo và bắt buộc phải bốc viên kẹo cuối cùng, kết thúc cuộc chơi. f(C, 2) = 1 vì người đi đang có số chẵn viên kẹo và có thể bốc 2 viên kẹo cuối cùng để giành chiến thắng. Cũng như vậy f(C, 3) = 1 (bốc 2). Tương tự như thế thì f(L, 1) = 1 (bốc 1), F(L, 2) = 1 (bốc 1), F(L, 3) = 1 (bốc 3).
Để tính f(C, 4) ta để ý rằng lúc này đối thủ đang có số lẻ viên kẹo. Nếu ta bốc 1, 2 hoặc 3 viên thì sẽ đưa đối thủ đến các trạng thái (L, 3), (L, 2), (L, 1) tương ứng, và đều là các trạng thái thắng của đối thủ. Suy ra f(C, 4) = 0. Với f(L, 4) ta bốc 3 viên, đưa đối thủ vào trạng thái thua (C, 1) và giành chiến thắng.
Tiếp tục, để tính f(C, 5) ta để ý rằng lúc này đối thủ đang có số chẵn viên kẹo. Do đó ta bốc 1 viên và đưa đối thủ vào trạng thái (C, 4) là trạng thái thua, như vậy f(C,5) = 1. Ngược lại từ (L, 5) ta chỉ có thể đưa về (L, 4), (L, 3), (L, 2) là các trạng thái thắng, suy ra f(L, 5) = 0.
Nói tóm lại, một trạng thái là thua nếu mọi cách đi đều đưa về trạng tháng thắng (cho đối thủ), một trạng thái là thắng nếu có một cách đi đưa về trạng thái thua (cho đối thủ). Bằng lý luận này, ta lập được bảng giá trị sau.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
C | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
L | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
C | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
L | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
19 | 20 | 21 | 22 | 23 | 24 | 25 | |||
C | 1 | 0 | 1 | 1 | 1 | 1 | 0 | ||
L | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
Như vậy f(C, 25) = 0, tức là Bình có chiến thuật thắng.
(Đây là bài toán khá khó trong lý thuyết thuật toán và trò chơi).
![](https://rs.olm.vn/images/avt/0.png?1311)
- Số của thẻ lấy ra là số chẵn: Có thể xảy ra
- Số của thẻ lấy ra là số lẻ: Có thể xảy ra
- Số của thẻ lấy ra chia hết cho 10: không thể xảy ra
- Số của thẻ lấy ra nhỏ hơn 10: Chắc chắn xảy ra.
Trong phép thử ở câu b, hoạt động 1, các sự kiện có thể xảy ra là:
- Bốc được lá thăm ghi số nhỏ hơn 5
- Bốc được lá thăm ghi số lẻ.
Do các số từ 1-4 không có số nào chia hết cho 5 nên sự kiện "Bốc được lá thăm ghi số chia hết cho 5" không thể xảy ra.
Cả ba sự kiện này đều có thể xảy ra