Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bán kính nguyên tử hiđrô: \(r_n=n^2r_0.\)
Bán kính quỹ đạo dừng N ứng với n = 4
=> \(r_N=r_4= 4^2.5,3.10^{-11}= 84,8.10^{-11}m.\)
Bán kính quỹ đạo dừng của hiđrô: \(r_n=n^2r_0.\)
Bán kính quỹ đạo dừng M ứng với n = 3
=> \(r_M=r_3= 3^2.5,3.10^{-11}=47,7.10^{-11}m.\)
\(\frac{r}{r_0}=\frac{2,2.10^{-10}}{5,3.10^{-11}} \approx 4.\)
=> \(r = 4r_0 = 2^2 r_0.\) Tức là electron nhảy lên trạng thái dừng L (n = 2).
Gia tốc cực đại: \(a_{max}=\omega^2.A=(2\pi.2,5)^2.0,05=12,3m/s^2\)
Ở trạng thái kích thích thứ nhất: n = 2
Trạng thái kích thích thứ ba: n = 4
Ta có:
\(r_n=r_0.n^2\)
\(\Rightarrow r_2=r_0.4\)
\(r_4=r_0.16\)
\(\Rightarrow \dfrac{r_4}{r_2}=4\Rightarrow r_4=r_2.4=8,48.10^{-10}(m)\)
Chọn A.
Cách 1: Trong 5 μs = T/4 nên điện tích dịch chuyển là Q0
Số \( Ne = \frac{Q_0}{e} \text{ với } Q_0 = \frac{I_0}{\omega }\)
Đáp án A
Cách 2: Áp dụng \(q = n.e = \int_{0}^{5.10^{-6}} 0,012.\sin (10^5 \pi t) dt = 3,82.10^{-8}C \Rightarrow n = \frac{q}{e } = \frac{3,82.10^{-8}}{1,6.10^{-19}} = 2,39.10^{11}\)
Đáp án A
Động năng tối thiểu của α chính là năng lượng thu vào của phản ứng.
Đề bài thiếu khối lượng của α và C.
Bạn tự tìm Wthu của phản ứng nhé.
Do E và B biến thiên cùng pha nên, khi cảm ứng từ có độ lớn B0/2 thì điện trường E cũng có độ lớn E0/2.
Bài toán trở thành tính thời gian ngắn nhất để cường độ điện trường có độ lớn E0/2 đang tăng đến độ lớn E0/2.
E M N Eo Eo/2
Từ giản đồ véc tơ quay ta dễ dang tính được thời gian đó là t = T/3
Suy ra: \(t=\dfrac{5}{3}.10^{-7}\)s
\(E_n = -\frac{13,6}{n^2},(eV)\)(với n = 1, 2, 3,..)
Nguyên tử hiđrô hấp thụ một phôtôn có năng lượng 2,55 eV.
Việc đầu tiên là cần phải xác định xem nguyên tử nhảy từ mức nào lên mức nào mà có hiệu năng lượng giữa hai mức đúng bằng 2,55 eV.
\(E_1 = -13,6eV\), \(E_3 = -1,51 eV\)
\(E_2 = -3,4eV\),\(E_4 = -0,85eV\)
Nhận thấy \(E_4-E_2= -0,85 +3,4= 2,55 eV.\)
Như vậy nguyên tử đã hấp thụ năng lượng và nhảy từ mức n = 2 lên mức n = 4.
Tiếp theo, nguyên tử đang ở mức n = 4 rồi thì nó có thể phát ra bước sóng nhỏ nhất ứng với từ n = 4 về n = 1 tức là \(\lambda_{41}\) thỏa mãn
\(\lambda_{41}= \frac{hc}{E_4-E_1}= \frac{6,625.10^{-34}.3.10^8}{(-0,85+13,6).1,6.10^{-19}}=9,74.10^{-8}m. \)
Đáp án C
Trạng thái kích thích thứ 3 ứng với quỹ đạo dừng N (K,L,M,N).
Tức là n = 4. Vậy bán kính là :