Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(A\left(a;1-a\right)\) ; \(B\left(b;2b-1\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(a-1;2-a\right)\\\overrightarrow{MB}=\left(b-1;2b\right)\end{matrix}\right.\)
\(2\overrightarrow{MA}+\overrightarrow{MB}=0\Leftrightarrow\left(2a-2;4-2a\right)+\left(b-1;2b\right)=\left(0;0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a-2+b-1=0\\4-2a+2b=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2a+b=3\\-2a+2b=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{5}{3}\\b=-\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow A\left(\frac{5}{3};-\frac{2}{3}\right);B\left(-\frac{1}{3};-\frac{5}{3}\right)\) \(\Rightarrow\overrightarrow{AB}=\left(2;1\right)\)
Phương trình AB:
\(1\left(x-\frac{5}{3}\right)-2\left(y+\frac{2}{3}\right)=0\Leftrightarrow x-2y-3=0\)
Đường tròn (C) tâm \(I\left(-1;2\right)\) bán kính \(R=\sqrt{\left(-1\right)^2+2^2+4}=3\)
Áp dụng định lý Pitago:
\(d\left(I;d\right)=\sqrt{R^2-\left(\frac{6}{2}\right)^2}=0\)
\(\Rightarrow d\) đi qua I
d vuông góc \(\Delta\) nên d nhận \(\left(1;2\right)\) là 1 vtpt
Phương trình d:
\(1\left(x+1\right)+2\left(y-2\right)=0\Leftrightarrow x+2y-3=0\)
Tâm I thuộc đường thẳng d nên thỏa mãn \(x+3y+8=0\)
Có 2 cách gọi: 1 là đặt ẩn x là a thì: \(a+3y+8=0\Rightarrow y=\frac{-a-8}{3}\)
\(\Rightarrow I\left(a;\frac{-a-8}{3}\right)\)
2 là đặt ẩn y là a thì: \(x+3a+8=0\Rightarrow x=-3a-8\Rightarrow I\left(-3a-8;a\right)\)
Cách sau ko có mẫu số dễ tính toán hơn
Gọi tâm \(I\left(-3a-8;a\right)\Rightarrow\overrightarrow{IA}=\left(3a+6;1-a\right)\)
\(d\left(I;d'\right)=\frac{\left|3\left(-3a-8\right)-4a+10\right|}{\sqrt{3^2+\left(-4\right)^2}}=\frac{\left|13a+14\right|}{5}\)
(C) qua A và tiếp xúc d' \(\Leftrightarrow IA=d\left(I;d'\right)\)
\(\Leftrightarrow\left(3a+6\right)^2+\left(1-a\right)^2=\frac{\left(13a+14\right)^2}{25}\)
\(\Leftrightarrow a^2+6a+9=0\Rightarrow a=-3\)
\(\Rightarrow I\left(1;-3\right)\Rightarrow R=IA=5\)
Pt đường tròn: \(\left(x-1\right)^2+\left(y+3\right)^2=25\)
d nhận \(\left(2m;-m-2\right)\) là 1 vtpt
Do 2 vecto đã cho cùng phương
\(\Leftrightarrow\frac{2m}{-6}=\frac{-m-2}{2}\Leftrightarrow4m=6m+12\)
\(\Rightarrow m=-6\Rightarrow\overrightarrow{n}=\left(-12;4\right)\)
\(\Rightarrow\left|\overrightarrow{n}\right|=\sqrt{12^2+4^2}=4\sqrt{10}\)
Đường tròn tâm \(I\left(2;\frac{1}{2}\right)\)
\(\Delta\) song song d nên pt \(\Delta\) có dạng: \(x+2y+c=0\) (\(c\ne20\))
Dây cung có độ dài lớn nhất là đường kính
\(\Rightarrow\) Để \(\Delta\) cắt (C) theo 1 dây cung có độ dài lớn nhất khi và chỉ khi \(\Delta\) qua I
\(\Rightarrow2+\frac{1}{2}.2+c=0\Rightarrow c=-3\)
Phương trình \(\Delta\): \(x+2y-3=0\)
Giao điểm với Ox: \(\left\{{}\begin{matrix}\frac{x}{3}+\frac{y}{4}=1\\y=0\end{matrix}\right.\) \(\Rightarrow A\left(3;0\right)\)
Giao với Oy: \(\left\{{}\begin{matrix}\frac{x}{3}+\frac{y}{4}=1\\x=0\end{matrix}\right.\) \(\Rightarrow B\left(0;4\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(-3;4\right)\Rightarrow AB=\sqrt{\left(-3\right)^2+4^2}=5\)
Đường tròn tâm \(I\left(1;1\right)\) bán kính \(R=\sqrt{1^2+1^2-\left(-23\right)}=5\)
Thay tọa độ I vào d thỏa mãn \(\Rightarrow I\) thuộc d
\(\Rightarrow\) d cắt (C) theo dây cung đúng bằng đường kính
\(\Rightarrow\) Độ dài dây cung \(=2R=10\)
Giả sử d có 1 vtpt là \(\left(a;b\right)\) với \(a^2+b^2\ne0\)
\(cos45^0=\frac{\left|a.2+b.\left(-1\right)\right|}{\sqrt{a^2+b^2}.\sqrt{2^2+\left(-1\right)^2}}=\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow2\left(2a-b\right)^2=5a^2+5b^2\)
\(\Leftrightarrow2\left(4a^2-4ab+b^2\right)=5a^2+5b^2\)
\(\Leftrightarrow3a^2-8ab-3b^2=0\)
\(\Leftrightarrow\left(a-3b\right)\left(3a+b\right)=0\Rightarrow\left[{}\begin{matrix}a=3b\\b=-3a\end{matrix}\right.\)
Chọn \(\left(a;b\right)=\left[{}\begin{matrix}\left(3;1\right)\\\left(1;-3\right)\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3\left(x-1\right)+1\left(y-1\right)=0\\1\left(x-1\right)-3\left(y-1\right)=0\end{matrix}\right.\)