K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2023

\(PT\left(T\right)\) có dạng \(x^2+y^2-2ax-2by+c=0\)

\(\left\{{}\begin{matrix}A\left(-1;2\right)\in\left(T\right)\\B\left(1;2\right)\in\left(T\right)\\C\left(2;-3\right)\in\left(T\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(-1\right)^2+2^2+2a-4b+c=0\\1^2+2^2-2a-4b+c=0\\2^2+\left(-3\right)^2-4a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a-4b+c=-5\\-2a-4b+c=-5\\-4a+6b+c=-13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-\dfrac{4}{5}\\c=-\dfrac{41}{5}\end{matrix}\right.\)

\(\Rightarrow\)Tâm \(I\left(0;-\dfrac{4}{5}\right)\)

\(AB=\sqrt{\left(1+1\right)^2+\left(2-2\right)^2}=2\)

\(AC=\sqrt{\left(2+1\right)^2+\left(-3-2\right)^2}=\sqrt{34}\)

\(BC=\sqrt{\left(2-1\right)^2+\left(-3-2\right)^2}=\sqrt{26}\)

\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{3}{\sqrt{34}}\)

=>\(sinBAC=\dfrac{5\sqrt{34}}{34}\)

\(S_{ABC}=\dfrac{1}{2}\cdot2\cdot\sqrt{34}\cdot\dfrac{5}{\sqrt{34}}=5\)

1: \(\overrightarrow{AB}=\left(-10;-5\right)\)

\(\overrightarrow{AC}=\left(-6;3\right)\)

\(\overrightarrow{BC}=\left(4;8\right)\)

Vì \(\overrightarrow{AC}\cdot\overrightarrow{BC}=0\) ΔABC vuông tại C

\(AC=\sqrt{\left(-6\right)^2+3^2}=3\sqrt{5}\)

\(BC=\sqrt{4^2+8^2}=4\sqrt{5}\)

Do đó: \(S_{ABC}=\dfrac{AC\cdot BC}{2}=\dfrac{3\sqrt{5}\cdot4\sqrt{5}}{2}=3\sqrt{5}\cdot2\sqrt{5}=30\)

 

Gọi trực tâm là H

\(\overrightarrow{BC}=\left(1;1\right)\)

\(\overrightarrow{AH}=\left(x-2;y-1\right)\)

Theo đề, ta có: (x-2)*1+1(y-1)=0

=>x+y-3=0

\(\overrightarrow{AC}=\left(-2;3\right)\)

\(\overrightarrow{BH}=\left(x+1;y-3\right)\)

Theo đề, ta có; -2(x+1)+3(y-3)=0

=>-2x-2+3y-9=0

=>-2x+3y=11

mà x+y=3

nên x=-2/5; y=17/5

Gọi (C): \(x^2+y^2-2ax-2by+c=0\) là phương trình đường tròn ngoại tiếp ΔABC

Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}2^2+1^2-4a-2b+c=0\\1+9+2a-6b+c=0\\0^2+4^2+0a-8b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4a-2b+c=-5\\2a-6b+c=-10\\-8b+c=-16\end{matrix}\right.\)

=>a=7/10; b=23/10; c=12/5

=>x^2+y^2-7/5x-23/5x+12/5=0

=>x^2-2*x*7/10+49/100+y^2-2*x*23/10+529/100=169/50

=>(x-7/10)^2+(y-23/10)^2=169/50

=>R=13/5căn 2

 

NV
7 tháng 3 2020

\(\overrightarrow{BC}=\left(4;4\right);\overrightarrow{AC}=\left(-3;7\right)\)

\(\Rightarrow\) Các đường thẳng vuông góc với BC và AC lần lượt nhận \(\overrightarrow{n_1}=\left(1;1\right)\)\(\overrightarrow{n_2}=\left(-3;7\right)\) là các vtpt

a/ Phương trình đường cao AH của BC:

\(1\left(x-4\right)+1\left(y+1\right)=0\Leftrightarrow x+y-3=0\)

Phương trình đường cao BK của AC:

\(-3\left(x+3\right)+7\left(y-2\right)=0\Leftrightarrow-3x+7y-23=0\)

Tọa độ trực tâm là nghiệm của hệ: \(\left\{{}\begin{matrix}x+y-3=0\\-3x+7y-23=0\end{matrix}\right.\)

b/ Gọi M là trung điểm BC \(\Rightarrow M\left(-1;4\right)\)

Phương trình trung trực BC:

\(1\left(x+1\right)+1\left(y-4\right)=0\Leftrightarrow x+y-3=0\)

Gọi N là trung điểm AC \(\Rightarrow N\left(\frac{5}{2};\frac{5}{2}\right)\)

Phương trình trung trực AC:

\(-3\left(x-\frac{5}{2}\right)+7\left(y-\frac{5}{2}\right)=0\Leftrightarrow-3x+7y-10=0\)

Tọa độ tâm đường tròn ngoại tiếp là nghiệm: \(\left\{{}\begin{matrix}x+y-3=0\\-3x+7y-10=0\end{matrix}\right.\)