Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đường thẳng $(d_1)$ có VTCP là \(\overrightarrow{u_1}=(-\sqrt{2}; \sqrt{2})\)
Đường thẳng $(d_2)$ có VTCP là \(\overrightarrow{u_2}=(-2;2)\)
\(\Rightarrow \overrightarrow{u_2}=\sqrt{2}.\overrightarrow{u_1}(1)\)
Gọi $A(2,2)$ thuộc $(d_1)$
Thay tọa độ điểm $A$ vào $(d_2)$ ta thấy không thỏa mãn nên $A\not\in (d_2)(2)$
Từ $(1);(2)\Rightarrow (d_1); (d_2)$ song song với nhau.
a. Md1= (2;1)
Md2 = (-1;3)
b. Gọi d là đường thẳng đi qua M
- Viết PTTS của d ⊥ d1:
Ta có:
M(2;1)
Do d1⊥ d nên VTCP ud1 = (-3;-1) --> VTPT nd = (-1;3)
--> VTCP ud = (3;1)
Vậy PTTS của d:
\(\left\{{}\begin{matrix}x=2+3t\\y=1+t\end{matrix}\right.\)
- Viết PTTQ của d ⊥ d1:
Ta có:
M(2;1)
Do d1 ⊥ d nên VTCP ud1 = (-3;-1) --> VTPT nd = (-1;3)
Vậy PTTQ của d:
-1(x - 2) + 3(y - 1) = 0
<=> -x + 2 + 3y - 3 = 0
<=> -x + 3y - 1 = 0
- Viết PTTS của d ⊥ d2:
Ta có:
M(-1;3)
Do d ⊥ d2 nên VTCP ud2 = (-2;-1) --> VTPT ud = (-1;2)
--> VTCP ud = (2;1)
Vậy PTTS của d:
\(\left\{{}\begin{matrix}x=-1+2t\\y=3+t\end{matrix}\right.\)
Viết PTTQ của d ⊥ d2:
M(-1;3)
Do d ⊥ d2 nên VTCP ud2 = (-2;-1) --> VTPT ud = (-1;2)
Vậy PTTQ của d:
-1(x + 1) + 2(y - 3) = 0
<=> -x - 1 + 2y - 6 = 0
<=> -x + 2y - 7 = 0
\(d_1\) nhận \(\left(2;-m\right)\) là 1 vtpt
\(d_2\) nhận \(\left(-1;3\right)\) là 1 vtcp nên nhận \(\left(3;1\right)\) là 1 vtpt
Để 2 đường thẳng vuông góc
\(\Leftrightarrow2.\left(-1\right)+\left(-m\right).3=0\Rightarrow m=-\frac{2}{3}\)
\(d_1\) nhận \(\left(3;4\right)\) là 1 vtpt
\(d_2\) nhận \(\left(a;-2\right)\) là 1 vtcp \(\Rightarrow\) nhận \(\left(2;a\right)\) là 1 vtpt
Do đó ta có:
\(\frac{\left|3.2+4.a\right|}{\sqrt{3^2+4^2}.\sqrt{4+a^2}}=cos45^0=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\frac{\left|4a+6\right|}{5\sqrt{a^2+4}}=\frac{\sqrt{2}}{2}\Leftrightarrow\sqrt{2}\left(4a+6\right)=5\sqrt{a^2+4}\)
\(\Leftrightarrow2\left(4a+6\right)^2=25\left(a^2+4\right)\)
\(\Leftrightarrow7a^2+96a-28=0\)
\(\Rightarrow a_1+a_2=-\frac{96}{7}\) (theo Viet)
a. Tọa độ A thỏa mãn:
\(4-3t+2\left(-1+2t\right)-1=0\Rightarrow t=-1\)
\(\Rightarrow A\left(7;-3\right)\)
b. d1 nhận \(\left(-3;2\right)=-1\left(3;-2\right)\) là 1 vtcp nên đường thẳng d nhận \(\left(2;3\right)\) là 1 vtcp và \(\left(3;-2\right)\) là 1 vtpt
Phương trình tham số d: \(\left\{{}\begin{matrix}x=7+2t\\y=-3+3t\end{matrix}\right.\)
Pt tổng quát:
\(3\left(x-7\right)-2\left(y+3\right)=0\Leftrightarrow3x-2y-27=0\)
Đường thẳng d2 nhận \(\left(1;2\right)\) là 1 vtpt nên d3 nhận \(\left(1;2\right)\) là 1 vtpt và \(\left(2;-1\right)\) là 1 vtcp
Phương trình tham số d3: \(\left\{{}\begin{matrix}x=7+2t\\y=-3-t\end{matrix}\right.\)
Pt tổng quát:
\(1\left(x-7\right)+2\left(y+3\right)=0\Leftrightarrow x+2y-1=0\)