K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

Đáp án B

Đường tròn (C) có tâm O(1;–2). T u → ( O ) = O ' . Áp dụng biểu thức tọa độ ta có: x ' − 1 = − 1 y ' + 2 = 3

<=> x ' = 0 y ' = 1 Đường tròn tâm O’(0;1) bán kính  3

Phương trình đường tròn cần tìm: x 2 + y − 1 2 = 3

Chọn B

18 tháng 11 2018

Đáp án B

Q ( O ; 180 o ) : I → I ' (–1;1) , bán kính 3

T u → ( I ) = I ' 1 ; − 2  bán kính 3

Phương trình đường tròn (C”):  x − 1 2 + y + 2 2 = 9

13 tháng 4 2019

12 tháng 3 2019

Đáp án C

  Q ( O ; 180 o ) : I → I ' (0;1) , bán kính 3

I ' ' = V O ; k ( I ' ) => I”(0;2), bán kính 6

  T u → ( I " ) = I ' " 1 ; 4 , bán kính 6

Phương trình đường tròn (C”): ( x − 1 ) 2 + y − 4 2 = 36

9 tháng 6 2018

a) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua O.

Dùng biểu thức tọa độ của phép đối xứng qua gốc tọa độ ta có :

M′ = (2; −3), phương trình của d′: 3x – y – 9 = 0, phương trình của đường tròn (C′): x 2   +   y 2   −   2 x   +   6 y   +   6   =   0 .

b) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua I .

Vì I là trung điểm của MM' nên M′ = (4;1)

Vì d' song song với d nên d' có phương trình 3x – y + C = 0.

Lấy một điểm trên d, chẳng hạn N(0; 9).

Khi đó ảnh của N qua phép đối xứng qua tâm I là N′(2; −5).

Vì N' thuộc d nên ta có 3.2 − (−5) + C = 0. Từ đó suy ra C = -11.

Vậy phương trình của d' là 3x – y – 11 = 0.

Để tìm (C'), trước hết ta để ý rằng (C) là đường tròn tâm J(−1; 3),

bán kính bằng 2. Ảnh của J qua phép đối xứng qua tâm I là J′(3; 1).

Do đó (C') là đường tròn tâm J' bán kính bằng 2. Phương trình của (C') là x   −   3 2   +   y   −   1 2   =   4 .

15 tháng 10 2022

Tọa độ A' là:

\(\left\{{}\begin{matrix}x=-2+3=1\\y=3-2=1\end{matrix}\right.\)

Lấy B(0;-2) thuộc (d)

=>Tọa độ B' là: \(\left\{{}\begin{matrix}x=0+3=3\\y=-2-2=-4\end{matrix}\right.\)

Thay x=3 và y=-4 vào (d'): 4x+3y+c=0, ta được:

c+12-12=0

=>c=0

(C): (x-3)^2+(y-1)^2=9

=>R=3 và I(3;1)

=>I'(5;-5)

=>(C'): (x-5)^2+(y+5)^2=9

NV
4 tháng 1 2021

Đường tròn có pt:

\(\left(x-1\right)^2+\left(y-1\right)^2=8\)

Tâm \(I\left(1;1\right)\) và \(R=2\sqrt{2}\)

Gọi \(I_1\) là ảnh của I qua phép quay 

\(\Rightarrow\left\{{}\begin{matrix}x_{I1}=1.cos\left(-45^0\right)-1sin\left(-45^0\right)=\sqrt{2}\\y_{I_1}=1.sin\left(-45^0\right)+1.cos\left(-45^0\right)=0\end{matrix}\right.\)

\(\Rightarrow I_1\left(\sqrt{2};0\right)\)

Gọi \(I_2\) là ảnh của \(I_1\) qua phép vị tự:

\(\Rightarrow\left\{{}\begin{matrix}x_{I_2}=-\sqrt{2}.\sqrt{2}=-2\\y_{I_2}=-\sqrt{2}.0=0\end{matrix}\right.\) \(\Rightarrow I_2\left(-2;0\right)\)

\(R_2=\left|-\sqrt{2}\right|.2\sqrt{2}=4\)

Vậy pt đường tròn ảnh có dạng:

\(\left(x+2\right)^2+y^2=16\)