K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

tức là tìm ptdt đenta ý nó cho biết ptdt đenta qua d1 còn đâu là tìm nó

NV
20 tháng 4 2020

Bài 1:

Gọi A và B lầm lượt là giao điểm của d với Ox và Oy

\(\Rightarrow A\left(3;0\right)\) ; \(B\left(0;5\right)\)

\(\Rightarrow\left\{{}\begin{matrix}OA=\left|x_A\right|=3\\OB=\left|y_B\right|=5\end{matrix}\right.\) \(\Rightarrow S_{OAB}=\frac{1}{2}OA.OB=\frac{15}{2}\)

Bài 2:

Đề thiếu, phải đối xứng qua cái gì chứ bạn?

NV
25 tháng 7 2020

Bận ăn cơm :(

Bạn nhầm vị trí điểm I với điểm K à?

Vậy mình nêu hướng giải thôi nhé, làm biếng quá

Dễ dàng chứng minh \(\Delta_vADK=\Delta_vBAI\Rightarrow\widehat{DAK}=\widehat{IBA}\)

\(\widehat{DAK}+\widehat{KAB}=90^0\Rightarrow\widehat{IBA}+\widehat{KAB}=90^0\Rightarrow AK\perp BI\)

Gọi E là trung điểm AB \(\Rightarrow CE//AK\) (hbh)

Gọi G là giao điểm BI và CE thì EG là đtb tam giác ABM (qua trung điểm E và song song cạnh đáy)

\(\Rightarrow\) G là trung điểm BM \(\Rightarrow CG\) là đường cao đồng thời là trung tuyến trong tam giác BCM

\(\Rightarrow\Delta BCM\) cân tại C \(\Rightarrow BC=CM=\sqrt{10}\)

\(AB=BC=\sqrt{10};AI=\frac{1}{2}AD=\frac{\sqrt{10}}{2}\)

\(\Rightarrow BI=\sqrt{AB^2+AI^2}=\frac{5\sqrt{2}}{2}\Rightarrow MB=\frac{AB^2}{BI}=2\sqrt{2}\)

\(\Rightarrow cos\widehat{MCB}=\frac{2BC^2-BM^2}{2BC^2}=\frac{3}{5}\)

\(\Rightarrow\) Viết được pt BC (qua C và tạo với đường thẳng CM đã biết 1 góc có \(cos=\frac{3}{5}\))

Tọa độ B là giao của BC và đường tròn tâm C bán kính BC có pt \(\left(x-2\right)^2+\left(y+2\right)^2=10\)

NV
25 tháng 7 2020

Nhân tiện hướng giải bài kia:

Gọi M là trung điểm AD, G là trọng tâm tam giác ABC

Do ABC cân tại A nên G và K cùng thuộc trung tuyến ứng với BC \(\Rightarrow GK\perp BC\)

E là trọng tâm ABD \(\Rightarrow\) DE đi qua trung điểm AB \(\Rightarrow\) DE là đường trung bình tam giác ABC (đi qua trung điểm của AB và AC)

\(\Rightarrow DE//BC\Rightarrow GK\perp DE\) (*)

K là tâm đường tròn ngoại tiếp, D là trung điểm AC \(\Rightarrow KD\perp AC\) (1)

G là trọng tâm ABC, E là trọng tâm ABD

\(\Rightarrow\left\{{}\begin{matrix}BG=\frac{2}{3}BD\\BE=\frac{2}{3}BM\end{matrix}\right.\) \(\Rightarrow EG//MD\) (Talet đảo) (2)

(1);(2) \(\Rightarrow KD\perp EG\) (**)

(*);(**) \(\Rightarrow\) G là trực tâm EDK \(\Rightarrow DG\perp EK\) hay \(BD\perp EK\)

\(\Rightarrow\) Viết được pt BD (qua Q và vuông góc EK)

Do D thuộc BD, gọi tọa độ D theo 1 ẩn

P thuộc AC \(\Rightarrow PD\perp KD\Rightarrow\overrightarrow{PD}.\overrightarrow{KD}=0\Rightarrow\) tìm được tọa độ D

Viết được pt AC (qua P và vuông góc BD)

Viết pt EG (qua E và song song AC) \(\Rightarrow\) tọa độ G là giao điểm EG và BD

\(\Rightarrow\) Phương trình GK \(\Rightarrow\) tọa đô A là giao GK và AC

\(\Rightarrow\)Tọa độ C (D là trung điểm AC)

NV
11 tháng 4 2021

a. \(\overrightarrow{AB}=\left(4;-2\right)\) ; \(\overrightarrow{BC}=\left(-2;-4\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{BC}=4.\left(-2\right)+\left(-2\right).\left(-4\right)=0\\AB=\sqrt{4^2+\left(-2\right)^2}=2\sqrt{5}\\BC=\sqrt{\left(-2\right)^2+\left(-4\right)^2}=2\sqrt{5}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}AB\perp BC\\AB=BC\end{matrix}\right.\) \(\Rightarrow\Delta ABC\) vuông cân tại B

\(S_{ABC}=\dfrac{1}{2}AB.BC=10\)

b.

\(\overrightarrow{AC}=\left(2;-6\right)=2\left(1;-3\right)\)

(h) vuông góc AC nên nhận (1;-3) là 1 vtpt

Phương trình: \(1\left(x-2\right)-3\left(y-4\right)=0\Leftrightarrow x-3y+10=0\)

NV
11 tháng 4 2021

c.

Gọi M là trung điểm BC \(\Rightarrow M\left(5;0\right)\)

Phương trình trung trực BC qua M và vuông góc BC (nên nhận (1;2) là 1 vtpt):

\(1\left(x-5\right)+2y=0\Leftrightarrow x+2y-5=0\)

Tọa độ K là nghiệm: \(\left\{{}\begin{matrix}x+2y-5=0\\x-3y+10=0\end{matrix}\right.\) \(\Rightarrow K\left(-1;3\right)\)

Chứng minh ABHK là hbh, nhưng H là điểm nào vậy bạn?

d.

Gọi \(D\left(0;d\right)\Rightarrow\overrightarrow{CD}=\left(-4;d+2\right)\)

\(\overrightarrow{AC}.\overrightarrow{CD}=0\Leftrightarrow2.\left(-4\right)+\left(-6\right).\left(d+2\right)=0\Rightarrow d=-\dfrac{10}{3}\)

\(\Rightarrow D\left(0;-\dfrac{10}{3}\right)\)

NV
21 tháng 5 2020

CD nhận \(\left(3;-4\right)\) là 1 vtpt

Đường thẳng AD vuông góc CD nên nhận \(\left(4;3\right)\) là 1 vtpt

Phương trình AD:

\(4\left(x+2\right)+3\left(y-1\right)=0\Leftrightarrow4x+3y+5=0\)

NV
8 tháng 5 2021

\(d\left(M;\Delta\right)=\dfrac{\left|3.1-4.\left(-2\right)+4\right|}{\sqrt{3^2+\left(-4\right)^2}}=\dfrac{15}{5}=3\)

6 tháng 1 2018

Tự

Giao điểm của (d1) và (d2):

$ 2x = -x + 3 \\\Leftrightarrow 3x = 3 \\\Leftrightarrow x = 1 \\\Leftrightarrow y = 2x = 2 . 1 = 2 $

Vậy giao điểm của (d1) và (d2) là $ (1;2) $

(d3) // (d1) $ \Rightarrow a = 2 $

(d3) cắt (d2) tại điểm có tung độ là 4

$ \Rightarrow \begin{case} 4 = -x + 3 \\ 4 = 2x + b \end{case} \\\Leftrightarrow x = -1 \Rightarrow b = 6 $

27 tháng 10 2022

 

loading...

Tọa độ đỉnh B là:

\(\left\{{}\begin{matrix}x_B-2=2\\y_B+\dfrac{9}{2}=10\end{matrix}\right.\Leftrightarrow B\left(4;\dfrac{11}{2}\right)\)

Tọa độ đỉnh D là:

x=-3-(-2)=-1 và y=6-9/2=3/2

Tọa độ đỉnh C là:

x=7-2=5 và y=9/2-2=5/2