Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{BC}=\left(16;4\right)=4\left(4;1\right)\) ; \(\overrightarrow{AC}=\left(2;2\right)=2\left(1;1\right)\)
Phương trình đường cao xuất phát từ A và vuông góc BC:
\(4\left(x-3\right)+1\left(y-2\right)=0\Leftrightarrow4x+y-14=0\)
Pt đường cao xuất phát từ B:
\(1\left(x+11\right)+1\left(y-0\right)=0\Leftrightarrow x+y+11=0\)
Tọa độ H là nghiệm: \(\left\{{}\begin{matrix}4x+y-14=0\\x+y+11=0\end{matrix}\right.\) \(\Rightarrow H\left(\dfrac{25}{3};-\dfrac{58}{3}\right)\)
\(S_{ABN}=3S_{ANC}\) , mà \(S_{ABN}+S_{ANC}=S_{ABC}\)
\(\Rightarrow S_{ANC}=\dfrac{1}{4}S_{ABC}\Rightarrow\overrightarrow{NC}=\dfrac{1}{4}\overrightarrow{BC}\)
Gọi \(N\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{NC}=\left(-1-x;-2-y\right)\\\overrightarrow{BC}=\left(-3;-5\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-1-x=-\dfrac{3}{4}\\-2-y=-\dfrac{5}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{4}\\y=-\dfrac{3}{4}\end{matrix}\right.\) \(\Rightarrow N\left(-\dfrac{1}{4};-\dfrac{3}{4}\right)\)
Gọi \(M\left(m;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-m;1\right)\\\overrightarrow{MB}=\left(-2-m;4\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{MA}-2\overrightarrow{MB}=\left(m+5;-7\right)\)
\(\Rightarrow\left|\overrightarrow{MA}-2\overrightarrow{MB}\right|=\sqrt{\left(m+5\right)^2+49}\ge7\)
Dấu "=" xảy ra khi \(m+5=0\Leftrightarrow m=-5\) hay \(M\left(-5;0\right)\)
a, Gọi \(I\left(x;y\right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC\)
\(\Rightarrow\left\{{}\begin{matrix}IA=IB\\IA=IC\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}IA^2=IB^2\\IA^2=IC^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(-3-x\right)^2+\left(6-y\right)^2=\left(1-x\right)^2+\left(-2-y\right)^2\\\left(-3-x\right)^2+\left(6-y\right)^2=\left(6-x\right)^2+\left(3-y\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=-5\\3x-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
Phương trình hoành độ giao điểm của ∆ và (P) là
x 2 - x + 3 = x + 2 m ⇔ x 2 - 2 x + 3 = 0 (*)
Giả sử A ( x A ; y A ) thì B x B ; y B là các nghiệm của phương trình (*).
Theo định lí Vi-ét ta có x A + x B = 2 .
Ta có y A = x A + 2 m , y B = x B + 2 m nên y A + y B = x A + x B + 4 m = 2 + 4 m .
Tọa độ trung điểm I của đoạn thẳng AB là I x A + x B 2 ; y A + y B 2 = I 1 ; 2 m + 1 .
Chọn A.
Từ phương trình \(\Rightarrow a^2=25\Rightarrow a=5\)
Độ dài trục lớn: \(2a=10\)
Do C thuộc d nên tọa độ C có dạng \(C\left(c;2c+3\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AC}=\left(c+1;2c+1\right)\\\overrightarrow{BC}=\left(c+3;2c+1\right)\end{matrix}\right.\)
\(AC=BC\Leftrightarrow\left(c+1\right)^2+\left(2c+1\right)^2=\left(c+3\right)^2+\left(2c+1\right)^2\)
\(\Leftrightarrow2c+1=6c+9\Rightarrow c=-2\)
\(\Rightarrow C\left(-2;-1\right)\)
\(\overrightarrow{AB}=\left(-4;3\right)\Rightarrow AB=\sqrt{4^2+3^2}=5\)