K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Chọn ngẫu nhiên 2 chuyên gia vào ban tổ chức là một tổ hợp chập 2 của 22 phần tử. Do đó, số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = C_{22}^2\)( phần tử)

Gọi A là biến cố “Chọn được 2 chuyên gia ở hai châu lục khác nhau vào ban tổ chức”

Để chọn được 2 chuyên gia ở hai châu lục khác nhau vào ban tổ chức ta phải chọn 1 chuyên gia đến từ châu Á và 1 chuyên gia đến từ châu Âu. Có 10 cách chọn 1 chuyên gia đến từ châu Á và 12 cách chọn 1 chuyên gia đến từ châu Âu. Do đó, theo quy tắc nhân số phần tử của biến cố A là: \(n\left( A \right) = 10.12 = 120\)( phần tử)

Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{120}}{{C_{22}^2}} = \frac{{40}}{{77}}\)

24 tháng 9 2023

Tham khảo:

 

Ta có bảng sau:

Dễ thấy: Có 10 bạn tham gia (1 chuyên đề hoặc cả hai)

Vậy có 2 thành viên vắng mặt trong cả hai chuyên đề.

23 tháng 4 2023

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega  \right) = C_{12}^4\)

a) Số kết quả thuận lợi cho biến cố “Bốn bạn thuộc 4 tổ khác nhau” là số cách sắp xếp 4 bạn vào 4 tổ có \(4!\) cách

Vậy xác suất của biến cố “Bốn bạn thuộc 4 tổ khác nhau” là \(P = \frac{{4!}}{{C_{12}^4}} = \frac{8}{{165}}\)

b) Gọi là biến cố “Bốn bạn thuộc 2 tổ khác nhau”

xảy ra với 2 trường hợp sau:

TH1: 3 bạn cùng thuộc 1 tổ và 1 bạn thuộc tổ khác có \(C_4^3.C_3^1.C_2^1 = 24\) cách

TH2: cứ 2 bạn cùng thuộc 1 tổ \(C_4^2.C_3^1.C_2^2.C_2^1 = 36\) cách

Suy ra, số kết quả thuận lợi cho biến cố là \(n\left( A \right) = 24 + 36 = 60\)

Vậy xác suất của biến cố “Bốn bạn thuộc 2 tổ khác nhau” là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{60}}{{C_{12}^4}} = \frac{4}{{33}}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

A= {Nam; Hương; Chi; TúBình; Ngân; Khánh}

X = {Khánh; Bình; Hương; Chi; Tú }

Có Nam và Ngân chỉ tham gia chuyên đề 1.

Tập hợp các thành viên chỉ tham gia Chuyên đề 1 mà không tham gia Chuyên đề 2 là

G = {Nam; Ngân}

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Số bạn đi xe đạp đến trường là: \(40.40\%  = 16\) ( học sinh )

b) Chọn ngẫu nhiên một bạn để phân công vào đội xung kích của trường từ 40 bạn ta được một tổ hợp chập 1 của 40 phần tử. Do đó, không gian mẫu \(n\left( \Omega  \right) = C_{40}^1\)( phần tử)

Gọi A là biến cố “Bạn được chọn là bạn đến trường bằng xe đạp”.

Để chọn 1 bạn học là bạn đến trường bằng xe đạp ta được một tổ hợp chập 1 của 16 phần tử. Do đó số phần tử của biến cố A là: \(n\left( A \right) = C_{16}^1\)( phần tử)

Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{16}^1}}{{C_{40}^1}} = \frac{2}{5}\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Cách chọn 2 bạn từ 7 bạn là \(C_{7}^2 \Rightarrow n\left( \Omega  \right) = C_{7}^2 = 21\)

Gọi A là biến cố: “Hai bạn được chọn có một bạn nam và một bạn nữ”.

Cách chọn  một bạn nam là: 3 cách chọn

Cách chọn một bạn nữ là: 4 cách chọn

Theo quy tắc nhân ta có \(n\left( A \right) = 3.4 = 12\)

Vậy xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{12}}{{21}} = \frac{4}{7}\).

Chọn A

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Kí hiệu H là tập hợp tất cả các thành viên tham gia chuyên đề 1 hoặc chuyên đề 2.

Tập hợp các bạn tham gia chuyên đề 1: A= {Nam; Hương; Chi; Tú; Bình; Ngân; Khánh}

Tập hợp các bạn tham gia chuyên đề 2: B = {Hương; Chi; Tú; Khánh; Bình; Hân; Hiền; Lam}

Vậy H = {Nam; Ngân; Hân; Hiền; Lam; Khánh; Bình; Hương; Chi; Tú }

Chú ý khi giải

Mỗi phần tử chỉ liệt kê một lần.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Do các tấm thẻ giống nhau, nên lấy 3 tấm từ 10 tấm không quan tâm thứ tự có \(C_{10}^3 = 120\)cách, suy ra \(n\left( \Omega  \right) = 120\)

Gọi là biến cố “Tích các số ghi trên ba thẻ đó là số chẵn”

Để tích các số trên thẻ là số chẵn thì ít nhất có 1 thẻ là số chẵn

Để chọn ra 3 thẻ thuận lợi cho biến cố ta có 3 khả năng

+) Khả năng 1: 3 thẻ chọn ra có 1 thẻ có số chẵn và 2 thẻ có số lẻ có \(5.C_5^2 = 50\) khả năng

+) Khả năng 2: 3 thẻ chọn ra có 2 thẻ có số chẵn và 1 thẻ có số lẻ có \(C_5^2.5 = 50\) khả năng

+) Khả năng 3: 3 thẻ chọn ra có đều là có số chắn có \(C_5^3 = 10\) khả năng

Suy ra \(n\left( A \right) = 50 + 50 + 10 = 110\)

Vậy xác suất của biến cố là:   \(P(A) = \frac{{110}}{{120}} = \frac{{11}}{{12}}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Nam có là một phần tử của tập hợp A

Ngân không là một phần tử của tập hợp B

b) \(A = \){Nam; Hương; Chi; Tú; Bình; Ngân; Khánh}

\(B = \){Hương; Chi; Tú; Khánh; Bình; Hân; Hiền; Lam}