Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chú ý rằng với hai người \(A\)và \(B\)thi đấu với nhau thì \(A\)thi đấu với \(B\)và \(B\)thi đấu với \(A\).
Mỗi người sẽ đấu với \(n-1\)người, nên tổng số ván đấu của giải là:
\(\frac{n\left(n-1\right)}{2}\).
b) Giả sử \(n=12\).
Tổng số ván đấu của giải là: \(\frac{12.11}{2}=66\).
Tổng số điểm của tất cả các kì thủ là: \(2\times66=132\).
Kì thủ cuối thắng ba kì thủ đứng đầu, do đó số điểm kì thủ cuối ít nhất là \(2.3=6\).
Do số điểm các kì thủ đôi một khác nhau nên tổng số điểm tối thiểu của tất cả các kì thủ là:
\(6+7+8+9+10+11+12+13+14+15+16+17=138>132\).
Do đó không thể xảy ra điều này.
Ta có đpcm.
Các đội bóng đấu vòng tròn hai lượt đi và lượt về. Khi đó việc xếp số trận đấu được chia làm 14 giai đoạn:
Đội 1 có đấu 13 trận với 13 đội còn lại;
Đội 2 có đấu 13 trận với 13 đội còn lại;
…( bạn tự viết nốt nhá )
Đội 14 có đấu 13 trận với 13 đội còn lại.
Vậy có tất cả 13 + 13 + 13 + … + 13 (có 14 số 13) = 13.14 = 182 trận đấu.
Học tốt !
copp
https://haylamdo.com/toan-10-ct/bai-7-trang-32-toan-lop-10-tap-2.jsp
Mỗi trận đấu gồm 2 đội từ 14 đội và trên sân nhà hay sân đối thủ, nên mỗi trận đấu là một cách chọn 2 đội và sắp xếp chúng. Do đó, mỗi trận đấu là một chỉnh hợp chập 2 của 14 phần tử. Vậy số trận đấu có thể xảy ra là:
\(A_{14}^2 = 14.13 = 182\) (trận)
Số cách xếp trận đấu vòng tính điểm để cho hai đội chỉ gặp nhau đúng một lần là tổ hợp chập 2 của 10 phần tử, do đó số cách xếp trận đấu là: \(C_{10}^2 = 45\) (cách xếp)
- Mỗi bảng 4 đội thi đấu vòng tròn, giả sử là các đội A, B, C, D
Các trận đấu là: A-B, A-C, A-D, B-C, B-D, C-D => Có tất cả 6 trận đấu
- Có 8 bảng khác nhau.
- Tổng cộng vòng bảng có số trận đấu là 6.8 = 48 (trận đấu).
Với mỗi bảng, kí hiệu 4 đội lần lượt là A, B, C, D.
Số trận đấu chính là số cách chọn 2 đội thi đấu trong bảng, thực hiện liên tiếp các hoạt động sau:
Chọn một đội thi đấu với đội A: Có 3 cách chọn
Chọn một đội thi đấu với đội B: Có 2 cách chọn
Chọn một đội thi đấu với đội C: Có 1 cách chọn
Vậy sẽ có 3.2.1 = 6 trận đấu trong mỗi bảng.
Vậy 8 bảng có: 8.6 = 48 trận đấu được thi đấu trong vòng bảng
Chú ý:
Thể thức thi đấu vòng tròn một lượt tức là: mỗi đội sẽ lần lượt gặp tất cả các đội khác trong bảng, chỉ đấu 1 lần.
a) Các đội thi đấu vòng tròn một lượt và mỗi lượt đấu sẽ có 2 đội đấu với nhau, nên số trận đấu sẽ là số cách chọn ra 2 đội từ 7 đội, mỗi cách chọn 2 đội từ 7 đội là một tổ hợp chập 2 của 7, từ đó có tất cả số trận đấu là:
\(C_7^2 = \frac{{7!}}{{2!.5!}} = 21\) (trận)
b) Mỗi khả năng ba đội được chọn đi thi đấu cấp liên trường là một tổ hợp chập 3 của 7 đội, từ đó số khả năng có thể xảy ra của 3 đội đi thi cấp liên trường là
\(C_7^3 = \frac{{7!}}{{3!.4!}} = 35\)
Gọi a là số kỳ thủ tham gia (a thuộc N*)
Hai kỳ thủ bất kỳ gặp nhau hai ván gồm trận lượt đi và lượt về khi đó số trận đấu là
a(a-1)=90
→a=10(tm) hoặc a=-9(không tm)
=>Vậy số kỳ thủ tham gia là 10 người.