K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 7 2021

Chọn ngẫu nhiên 3 bạn: \(C_{15}^3=455\) cách

Chọn 3 bạn không có mặt lớp A: \(C_{11}^3=165\) cách

Chọn 3 bạn ko có mặt lớp B: \(C_{10}^3=120\)

Chọn 3 bạn ko có mặt lớp C: \(C_9^3=84\)

a.

Chọn 3 bạn có mặt đủ 3 lớp: \(455-\left(165+120+84\right)=86\) cách

b.

Chọn 3 bạn có ít nhất 1 bạn lớp A: \(455-165=290\) cách

c.

Không hiểu ý câu hỏi?

NV
25 tháng 7 2021

a.

Chọn 4 bạn bất kì từ 3 lớp: \(C_{12}^4\)

Chọn 4 bạn ko có lớp A: \(C_9^4\)

Chọn 4 bạn ko có lớp B: \(C_8^4\)

Chọn 4 bạn ko có lớp C: \(C_7^4\)

Số cách thỏa mãn: \(C_{12}^4-\left(C_7^4+C_8^4+C_9^4\right)=...\)

b.

Chọn 4 bạn có đúng 1 bạn lớp A: \(C_3^1.C_9^3\)

Số các thỏa mãn:

\(C_{12}^4-\left(3.C_9^3+C_9^4\right)\)

18 tháng 4 2017

Chọn C

NV
22 tháng 11 2021

TH1: 5 học sinh lớp C đứng cách nhau đúng 1 vị trí 

- Chọn vị trí cho nhóm 5 học sinh lớp C: 2 cách (đứng đầu hàng hoặc ko đứng đầu hàng)

- Hoán vị 5 học sinh lớp C: 5! cách

- Hoán vị 5 học sinh lớp A và B: 5! cách

\(\Rightarrow2.5!.5!\) cách cho TH1

TH2: 5 học sinh lớp C trong đó có 2 bạn đứng cách nhau 2 vị trí

Chọn vị trí cho 2 người kề nhau: 4 cách

Hoán vị 5 học sinh lớp C: 5! cách

Chọn 1 học sinh lớp A, 1 học sinh lớp B xếp vào 2 vị trí liền kề nói trên: \(C_2^1.C_3^1.2!\) cách

Xếp vị trí cho 3 người còn lại: 3! cách

\(\Rightarrow4.5!.C_2^1.C_3^1.2!.3!\) cách cho TH2

Tổng cộng: \(TH1+TH2=...\)

21 tháng 3 2018

2 tháng 7 2017

Đáp án B

Phương pháp.

Chia ra các khả năng có thể có của học sinh các lớp. Tính số cách chọn có thể có của mỗi trường hợp này. Lấy tổng kết quả các khả năng ở trên lại.

Lời giải chi tiết.

Ta xét các trường hợp sau. 

Có 1 học sinh lớp 12C có 2 học sinh lớp 12B và 2 học sinh lớp 12A khi đó ta có 2 C 3 2 C 4 2   =   36  

 cách chọn.

Có 1 học sinh lớp 12C có 3 học sinh lớp 12B và 1 học sinh lớp 12A khi đó ta có  2 C 3 3 C 4 1   =   8 cách chọn.

Có 1 học sinh lớp 12C có 1  học sinh lớp 12B và 3 học sinh lớp 12A khi đó ta có  2 C 3 1 C 4 3   =   24  cách chọn.

Có 2 học sinh lớp 12C có 1 học sinh lớp 12B và 2 học sinh lớp 12A khi đó ta có  C 3 1 C 4 2   =   18 cách chọn.

Có 2 học sinh lớp 12C có 2 học sinh lớp 12B và 1 học sinh lớp 12A khi đó ta có C 3 2 C 4 1   =   12  cách chọn.

Vậy tổng số cách chọn là 36 + 8 + 24 + 18 + 12 = 98

10 tháng 7 2019

Đáp án A

Chọn 5 học sinh từ đội văn nghệ của nhà trường, ta xét các trường hợp

TH1.1 học sinh lớp 12A, 2 học sinh lớp 12B và 2 học sinh lớp 12C

⇒ có C 4 1 . C 3 2 . C 2 2 = 12  cách

TH2.2 học sinh lớp 12A, 1 học sinh lớp 12B và 2 học sinh lớp 12C

có  C 4 3 . C 3 1 . C 2 2 = 18 cách

TH3.3 học sinh lớp 12A, 1 học sinh lớp 12B và 1 học sinh lớp 12C

có  C 4 3 . C 3 1 . C 2 1 = 24 cách

TH4. 1 học sinh lớp 12A, 3 học sinh lớp 12B và 1 học sinh lớp 12C

⇒ có  C 4 1 . C 3 3 . C 2 1 = 8 cách

TH5. 2 học sinh lớp 12A, 2 học sinh lớp 12B và 1 học sinh lớp 12C

có  C 4 2 . C 3 2 . C 2 1 = 36 cách

18 tháng 7 2021

- Chọn lớp trưởng là học sinh nam có 22 cách.

- Chọn lớp phó văn nghệ là học sinh nữ có 18 cách.

- Chọn 2 bạn từ 38 học sinh còn lại và xếp vào 2 chỗ: phó bí thư và phó lao động, có: \(A^2_{38}\)

⇒ Có: \(22.18.A_{38}^2=556776\) (cách)

Có 556766 cách

2 tháng 12 2018

Đáp án B.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Gọi    A: “Học sinh thích môn Bóng đá”

B: “Học sinh thích môn Bóng bàn”

Do đó ta có \(P\left( A \right) = \frac{{19}}{{30}},P\left( B \right) = \frac{{17}}{{30}},P\left( {AB} \right) = \frac{{15}}{{30}}\)

Theo công thức cộng xác suất

\(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{19}}{{30}} + \frac{{17}}{{30}} - \frac{{15}}{{30}} = \frac{{21}}{{30}} = \frac{7}{{10}}\)

Vậy xác suất để chọn được học sinh thích ít nhất một trong hai môn Bóng đá hoặc Bóng bàn là \(\frac{7}{{10}}\)