Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi được làm lạnh tới 00C, nước toả ra một nhiệt lượng bằng: Q1 = m1.C1(t – 0) = 0,5.4200.20 = 42 000JĐể làm “nóng” nước đá tới 00C cần tốn một nhiệt lượng:Q2 = m2.C2(0 – t2) = 0,5.2100.15 = 15 750JBây giờ muốn làm cho toàn bộ nước đá ở 00C tan thành nước cũng ở 00C cần một nhiệt lượng là: Q3 = λ.m2 = 3,4.105.0,5 = 170 000JNhận xét:+ Q1 > Q2 : Nước đá có thể nóng tới 00C bằng cách nhận nhiệt lượng do nước toả ra+ Q1 – Q2 < Q3 : Nước đá không thể tan hoàn toàn mà chỉ tan một phần.Vậy sau khi cân bằng nhiệt được thiết lập nước đá không tan hoàn toàn và nhiệt độ của hỗn hợp là 00C
Đáp án: A
- Nhiệt lượng do chậu và nước toả ra để hạ nhiệt độ xuống 0 0 C là:
- Nhiệt lượng thu vào của khối nước đá để tăng nhiệt độ lên 0 0 C và tan hết tại 0 0 C là:
- Vì Q 2 > Q 1 nên khối nước đá chưa tan hết
Đáp án: D
- Nhiệt lượng do nước đá thu vào để tan chảy hoàn toàn ở 0°C là:
- Nhiệt lượng do nước tỏa ra khi hạ xuống 0°C là:
- Ta thấy Q t h u > Q t ỏ a chứng tỏ chỉ 1 phần nước đá bị tan ra.
- Như vậy khi cân bằng nhiệt, hỗn hợp gồm cả nước và nước đá.
- Hay khi cân bằng nhiệt, nhiệt độ của hỗn hợp là t = 0 0 C
Đáp án: D
- Khi thả hai viên nước đá vào chậu nước. Giả sử nước đá tan hết ở 0 0 C .
- Nhiệt lượng do chậu và nước toả ra để hạ nhiệt độ xuống 0 0 C là:
Q 1 = ( m c + m 1 c 1 ) ( t 1 - 0 ) = 47000 ( J )
- Nhiệt lượng thu vào của 2 viên nước đá để tăng nhiệt độ lên 0 0 C và tan hết tại 0 0 C là:
Q 2 = 2 m 2 C 2 ( 0 - t 2 ) + 2 m 2 . λ = 13960 ( J )
- Vì Q 1 > Q 2 nên 2 viên đá sẽ tan hết và nhiệt độ cân bằng 0 0 C < t < 20 0 C .
Đáp án: B
- Nhiệt lượng do cốc và nước toả ra để hạ nhiệt độ xuống 0 0 C là:
- Nhiệt lượng thu vào của khối nước đá để tăng nhiệt độ lên 0 0 C và tan hết tại 0 0 C là:
- Vì Q 1 > Q 2 nên khối nước đá đã tan hết và nhiệt độ hỗn hợp lớn hơn 0 0 C
Đáp án: B
- Nhiệt lượng do xô và nước toả ra để hạ nhiệt độ xuống 0°C là:
- Nhiệt lượng thu vào của 1 viên nước đá để tăng nhiệt độ lên 0°C và tan hết tại 0°C là:
- Số viên nước đá cần phải thả vào nước là:
705000 : 83760 = 8,4
- Vậy phải thả vào xô ít nhất 9 viên đá để nhiệt độ cuối cùng trong xô là 0 0 C
Đáp án: B
- Nhiệt lượng toả ra của m1 kg nước để hạ nhiệt độ tới 0 0 C là :
- Nhiệt lượng cần cung cấp để 1kg nước đá tăng nhiệt độ tới 0 0 C là:
- So sánh Q t h u và Q t ỏ a ta thấy Q 1 > Q 2 . Vậy nước đá bị nóng chảy.
- Nhiệt lượng cần để nước đá nóng chảy hoàn toàn là :
- So sánh ta thấy Q 1 < Q 2 + Q 3 . Vậy nước đá chưa nóng chảy hoàn toàn.
Vậy nhiệt độ cân bằng là t = 0 0 C .
Đáp án: C
- Giả sử nhiệt độ của hỗn hợp sau khi cân bằng là 0 0 C
- Nhiệt lượng do nước tỏa ra khi hạ xuống 0 0 C là:
- Nhiệt lượng thu vào của viên nước đá để tăng nhiệt độ lên 0 0 C và tan hết tại 0 0 C là:
- Ta thấy Q t h u < Q t ỏ a chứng tỏ nước đá bị tan ra hoàn toàn.
- Gọi nhiệt độ hỗn hợp sau khi cân bằng là t 0 C (t > 0)
- Nhiệt lượng do nước tỏa ra khi hạ xuống 0 0 C là:
- Nhiệt lượng thu vào của viên nước đá để tăng nhiệt độ lên 0 0 C , tan hết tại 0 0 C và tăng lên đến t 0 C là:
Đáp án: A
- Gọi Q 1 là nhiệt lượng nược thu vào để tăng nhiệt độ từ t 1 = - 15 0 C đến t 2 = 0 0 C :
- Nhiệt lượng nước đá thu vào để nóng chảy hoàn toàn ở 0 0 C :
- Nhiệt lượng nước thu vào để tăng nhiệt độ từ 0 0 C đến 25 0 C :
- Tổng nhiệt lượng thu vào trong cả quá trình là:
Gọi nhiệt độ cân bằng chung của hệ là \(t\).
Nhiệt lượng nước tỏa từ \(5^oC\) xuống nhiệt độ cân bằng \(t\) là:
\(Q=0,1\cdot4200\cdot\left(5-t\right)=420\left(5-t\right)J\)
Nhiệt lượng cần cung cấp để tăng từ \(-20^oC\) đến \(0^oC\) là:
\(Q_1=6\cdot1800\cdot\left(t-\left(-20\right)\right)=10800\left(t+20\right)J\)
Nhiệt lượng cần cung cấp để khối nước tan từ \(0^oC\) là:
\(Q_2=m\cdot\lambda=6\cdot34\cdot10^4=204\cdot10^4J\)
Cân bằng nhiệt ta được:
\(Q_1=Q+Q_2\)
\(\Rightarrow10800\cdot\left(t+20\right)=204\cdot10^4+420\left(5-t\right)\)
\(\Rightarrow t=162,75^oC\)
Nhiệt độ cân bằng cuối cùng là - 4 độ C