Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
+Biên độ sóng tại M:
A M = 2 a cos π d 1 - d 2 λ = 2 a cos π d 1 - d 2 v f =0 cm
Hai nguồn dao động ngược pha thì tại M dao động cực đại \(\Rightarrow d_2-d_1=(k+0,5)\lambda\)
Giữa M và trung trực AB có duy nhất 1 cực đại \(\Rightarrow k =1\)
\(\Rightarrow d_2-d_1=1,5\lambda\)
\(\Rightarrow \lambda=4/3(cm)\)
\(\Rightarrow v = \lambda.f=\dfrac{56}{3}(cm/s)\)
Giữa M và đường trung trực của AB có hai đường cực đại khác tức là M nằm ở đường cực đại thứ k = 3. (Vì đường trung trực của AB với AB cùng pha là cực đại với k = 0)
=> \(AM - BM = 3 \lambda\)
=> \(20 - 15.5 = 3 \lambda \)
=>\(3 \frac{v}{f} = 4,5cm\)
=>\(f = \frac{3v}{4,5} = 20Hz.\)
Chọn đáp án. A
+ M là một cực đại giao thoa, giữa M và trung trực của AB (cực đại giao thoa k = 0) có 3 dãy cực tiểu khác → M là cực đại ứng với k = 3.
+ Ta có cm/s.
Chọn D
Đáp án B
Phương pháp: Phương trình giao thoa sóng trong giao thoa sóng hai nguồn cùng pha:
u M = 2 acos π ( d 2 - d 1 ) λ cos [ ωt - π ( d 2 + d 1 ) λ ]
Cách giải:
Bước sóng: λ = 2cm
Phương trình sóng tại M:
u M = 2 acos π ( MA - MB ) λ cos [ ωt - π ( MA + MB ) λ ]
X là điểm dao động với biên độ cực đại và ngược pha với M.
Phương trình sóng tại X:
u X = 2 acos π ( XA - XB ) λ cos [ ωt - π ( XA + XB ) λ ]
Vì X và M thuộc elip => M + MB = X + XB
=> uM và uX chỉ khác nhau về:
cos π ( MA - MB ) λ ; cos π ( XA - XB ) λ
Vì M thuộc trung trực của AB
⇒ cos π ( MA - MB ) λ = 1
X ngược pha với M
⇔ cos π ( XA - XB ) λ = - 1 ⇔ X A - X B = ( 2 k + 1 ) λ
- AB ≤ ( 2 k + 1 ) λ ≤ AB ⇔ - 19 ≤ ( 2 k + 1 ) λ ≤ 19 ⇒ - 5 , 25 ≤ k ≤ 4 , 25
=> Có 10 điểm dao động với biên độ cực đại và ngược pha với M trên đoạn B
=> Trên elip có 20 điểm dao động với biên độ cực đại và ngược pha với M.
Chọn B
+ Bước sóng của sóng cm.
+ M và N ngược pha nhau, λ = v / f = 3 giữa M và N có 5 điểm khác ngược pha với M. Các điểm cùng pha liên tiếp nhau thì cách nhau một bước sóng, các điểm ngược pha liên tiếp thì các nhau nửa bước sóng.
Từ hình vẽ ta xác định được MN=5,5 λ = 16 , 5 cm