Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Vì d 1 không song song hoặc trùng với d 2 nên không tồn tại phép tịnh tiến nào biến d 1 thành d 2 .
Gọi vecto tịnh tiến có dạng \(\overrightarrow{v}=\left(a;0\right)\)
\(M\left(0;-1\right)\) là 1 điểm thuộc d
M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)
\(\left\{{}\begin{matrix}x_{M'}=0+a=a\\y_{M'}=-1+0=-1\end{matrix}\right.\) \(\Rightarrow M'\left(a;-1\right)\)
Thay vào pt d':
\(a-1-1=0\Leftrightarrow a=2\)
Vậy \(\overrightarrow{v}=\left(2;0\right)\)
thầy ơi cho em hỏi vì sao vecto v lại biết đc số 0 là y v thầy
Giao của d với trục Ox là điểm A(3;0). Phép tịnh tiến phải tìm có vectơ tịnh tiến v → = O A → = ( − 3 ; 0 ) . Đường thẳng d' song song với d và đi qua gốc tọa độ nên nó có phương trình 3x – y = 0.
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
Do \(\overrightarrow{u}\) cùng phương với \(\overrightarrow{i}=\left(1;1\right)\) nên tồn tại một số thực t sao cho \(\overrightarrow{u}=t.\overrightarrow{i}\) ⇒ \(\overrightarrow{u}=\left(t;t\right)\)
d : 3x - y - 7 = 0 nên A (2 ; - 1) ∈ d
Sau khi thực hiện phép tịnh tiến thì ta được điểm B trên d; : 3x - y + 13
thỏa mãn \(\overrightarrow{AB}=\overrightarrow{u}=\left(t;t\right)\)
⇒ B (t + 2 ; t - 1)
Do B ∉ d' ⇒ 3(t + 2) - (t - 1) + 13 = 0
⇒ t = - 10
⇒ Vecto tịnh tiến là \(\overrightarrow{u}=\left(-10;-10\right)\)
Lấy M(x; y) thuộc d; gọi M’(x’; y’) là ảnh của M qua phép tịnh tiến theo vecto v → ( 1 ; 0 ) thì
Thay vào phương trình d ta được x’ – 2 = 0, hay phương trình d’ là x – 2 = 0.
Đáp án B
Chọn D
thanks nha