K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Để hai đường song song thì m+3=2

hay m=-1

Bạn ơi, bạn kí hiệu lại đi bạn. Khó hiểu quá

a: Thay x=0 và y=-5 vào (d), ta được:

2(m+1)*0-m^2-4=-5

=>m^2+4=5

=>m=1 hoặc m=-1

b:

PTHĐGĐ là;

x^2-2(m+1)x+m^2+4=0

Δ=(2m+2)^2-4(m^2+4)

=4m^2+8m+4-4m^2-16=8m-12

Để PT có hai nghiệm phân biệt thì 8m-12>0

=>m>3/2

x1+x2=2m+2; x1x2=m^2+4

(2x1-1)(x2^2-2m*x2+m^2+3)=21

=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21

=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21

=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21

=>(2x1-1)(2x2-1)=21

=>4x1x2-2(x1+x2)+1=21

=>4(m^2+4)-2(2m+2)+1=21

=>4m^2+16-4m-4-20=0

=>4m^2-4m-8=0

=>(m-2)(m+1)=0

=>m=2(nhận) hoặc m=-1(loại)

DT
12 tháng 11 2023

Bạn tham khảoloading... .

12 tháng 11 2023

Xét 2 đường thẳng: \(y=\left(m^2+2\right)x+m\left(d\right)\)

                               \(y=6x+2\left(d'\right)\)

Để \(\left(d\right)//\left(d'\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2+2=6\\m\ne2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\ne2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\m\ne2\end{matrix}\right.\)

\(\Leftrightarrow m=-2\)

Vậy.......

7 tháng 1 2021

a) y = 2x - 3

Cho x = 0 \(\Rightarrow\) y = -3 \(\Rightarrow\) A(0; -3)

Cho y = 0 \(\Rightarrow\) \(x=\dfrac{3}{2}\) \(\Rightarrow\) B\(\left(\dfrac{3}{2};0\right)\)

undefined

b) ĐKXĐ của (d'): \(m^2-2\ne0\)

\(\Leftrightarrow m\ne\sqrt{2}\)\(m\ne-\sqrt{2}\)

Để (d) // (d') thì

\(\left\{{}\begin{matrix}m^2-2=2\\m-1\ne-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\ne-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\m\ne-2\end{matrix}\right.\)

\(\Leftrightarrow m=2\) (nhận)

Vậy m = 2 thì (d) // (d')

8 tháng 4 2021

Theo Cô si       4x+\frac{1}{4x}\ge2  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014

Hơn nữa    A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.  \Leftrightarrow x=\dfrac{1}{4} .

Vậy  GTNN  =  2014

20 tháng 5 2015

hết hạn khỏi giải nhé mỏ vịt đi bơi đi

4 tháng 2 2020

Bài 3:

Đặt \(a=m^2-4\)

\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến

\(\Leftrightarrow a< 0\)

\(\Leftrightarrow m^2-4< 0\)

\(\Leftrightarrow m^2< 4\)

\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)

\(\Leftrightarrow-2< m< 2\)

Vậy với \(-2< m< 2\)thì hàm số nghịch biến

\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)

\(\Leftrightarrow a>0\)

\(\Leftrightarrow m^2-4>0\)

\(\Leftrightarrow m^2>4\)

\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)

Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)