K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2020

Trung điểm I của AB là: \(I\left(5;6\right)\)

Ta gọi pt đường thẳng AB có dạng: \(y=ax+b\)

\(\rightarrow\left\{{}\begin{matrix}5=a.4+b\\7=a.6+b\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}a=1\\b=1\rightarrow\end{matrix}\right.AB:y=x+1\)

Gọi pt đường trung trực của AB là: \(y=ax+b\left(1\right)\)

Do (d) vuông góc với AB và d đi qua I nên:

\(\rightarrow\left\{{}\begin{matrix}a.1=-1\\6=a.4+b\end{matrix}\right.\)\(\rightarrow\left\{{}\begin{matrix}a=-1\\b=10\end{matrix}\right.\)\(\rightarrow\left(d\right):y=-x+10\)

24 tháng 2 2017

a) Viết phương trình tổng quát của AB và tính diện tích tam giác ABC

Đề thi Học kì 2 Toán 10 có đáp án (Đề 1)

Phương trình tổng quát của AB là: 3(x - 1) + 2(y - 2) = 0 ⇔ 3x + 2y - 7 = 0

Kẻ CH ⊥ AB, (H ∈ AB)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 1)

Diện tích tam giác ABC là:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 1)

b) Viết phương trình đường tròn đường kính AB

Gọi I là trung điểm của AB

Đề thi Học kì 2 Toán 10 có đáp án (Đề 1)

Đường tròn đường kính AB là đường tròn tâm I bán kính IA:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 1)

NV
30 tháng 7 2021

\(\overrightarrow{BA}=\left(2;4\right)\Rightarrow AB=\sqrt{2^2+4^2}=2\sqrt{5}\)

Gọi M là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}M\left(-1;0\right)\\AM=\dfrac{AB}{2}=\sqrt{5}\end{matrix}\right.\)

Đường tròn đường kính AB có tâm M và bán kính \(R=AM\) nên có pt:

\(\left(x+1\right)^2+y^2=5\)

2 tháng 8 2021

\(\overrightarrow{AB}=\left(2,6\right)\)

\(\Rightarrow\overrightarrow{n}=\left(-6,2\right)\)

Đường thằng đi qua A(2,4) , nhận vecto \(\overrightarrow{n}\) làm vecto chỉ phương có PT : 

\(\left(-6\right)\cdot\left(x-2\right)+2\cdot\left(y-4\right)=0\)

\(\Rightarrow-6x+2y+4=0\)

2 tháng 8 2021

`|AB| = \sqrt((1-3)^2+(-2-4)^2)=2\sqrt10`

`=>` PT: `(x-1)^2+(y+2)^2=40`

2 tháng 8 2021

Bán kính AB=\(\sqrt{1²+3²}\)=\(\sqrt{10}\)     

phương trình d.tron b.kính AB là

(x-1)²+(y+2)²=10

21 tháng 3 2022

Gọi M(2;1) và d lần lượt là trung điểm và đường trung trực của AB.

Một vectơ pháp tuyến của d là \(\overrightarrow{n}\)=\(\overrightarrow{AB}\)=(2;0).

Phương trình cần tìm:

d: 2.(x-2)+0.(y-1)=0 \(\Rightarrow\) x=2.

a: Tọa độ trọng tâm là:

x=(1+2+0)/3=1 và y=(3+1+3)/3=7/3

c: \(d\left(A;d\right)=\dfrac{\left|1\cdot1+3\cdot\left(-1\right)+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\sqrt{2}}{2}\)