Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A,B lần lượt là giao của (d) với trục Ox và Oy
Tọa độ A là:
y=0 và (2m+1)x-1=0
=>x=1/(2m+1) và y=0
=>OA=1/|2m+1|
Tọa độ B là:
x=0 và y=-1
=>OB=1
Theo đề, ta có: S OAB=1/2
=>1/2*OA*OB=1/2
=>1/|2m+1|=1
=>|2m+1|=1
=>2m+1=1 hoặc 2m+1=-1
=>m=-1 hoặc m=0
em nghi dk m la so nguyen ta co;
y = mx+m-1
yx=4 (vi S=2)
neu x=2 thi y=2 nen thay vao ta tinh duoc m=1
neu x=1 thi y=4 ............m=5/2
b) Phương trình hoành độ giao điểm của (P) và (d):
x² = mx - m + 1
⇔ x² - mx + m - 1 = 0
∆ = m² - 4.1.(m - 1)
= m² - 4m + 4
= (m - 2)² ≥ 0 với mọi m ∈ R
⇒ Phương trình luôn có hai nghiệm
Theo Viét ta có:
x₁ + x₂ = m (1)
x₁x₂ = m - 1 (2)
Lại có x₁ + 3x₂ = 7 (3)
Từ (1) ⇒ x₁ = m - x₂ (4)
Thay x₁ = m - x₂ vào (3) ta được:
m - x₂ + 3x₂ = 7
2x₂ = 7 - m
x₂ = (7 - m)/2
Thay x₂ = (7 - m)/2 vào (4) ta được:
x₁ = m - (7 - m)/2
= (2m - 7 + m)/2
= (3m - 7)/2
Thay x₁ = (3m - 7)/2 và x₂ = (7 - m)/2 vào (2) ta được:
[(3m - 7)/2] . [(7 - m)/2] = m - 1
⇔ 21m - 3m² - 49 + 7m = 4m - 4
⇔ 3m² - 28m + 49 + 4m - 4 = 0
⇔ 3m² - 24m + 45 = 0
∆' = 144 - 3.45 = 9 > 0
Phương trình có hai nghiệm phân biệt:
m₁ = (12 + 3)/3 = 5
m₂ = (12 - 3)/3 = 3
Vậy m = 3; m = 5 thì (P) và (d) cắt nhau tại hai điểm có hoành độ thỏa mãn x₁ + 3x₂ = 7
Ta có A(0;2) suy ra OA=2
OB(\(\frac{2}{1-\sqrt{m-1}}\);0) suy ra OB=\(\frac{2}{1-\sqrt{m-1}}\)( (_) là trị tuyệt đối)
Ta có OA.OB=8
\(\frac{4}{\left(1-\sqrt{m-1}\right)}\)=8
(1-\(\sqrt{m-1}\) )=1/2
Phá dấu trị tuyệt đối là ra được m=5/4 hoặc m=13/4
a: Tọa độ điểm E là:
\(\left\{{}\begin{matrix}y=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
a, (d) cắt trục hoành tại A(xA;0) và trục tung B(0;xB)
Vì A thuộc (d) nên \(0=-2x_A+4\Leftrightarrow x_A=2 \Rightarrow A(2;0)\)
Vì B thuộc (d) nên \(y_B=-2.0+4=4\Rightarrow B(0;4)\)
Vậy A(2;0) và B(0;4) là hai điểm cần tìm.
b, Gọi C(xc;yc) là điểm có hoành độ bằng tung độ
⇒ xc = yc = a. Vì C thuộc (d) nên \(a=-2a+4\Leftrightarrow a=\dfrac{4}{3}\)
⇒ \(C(\dfrac{4}{3};\dfrac{4}{3})\) là điểm cần tìm.
b: Phương trình hoành độ giao điểm là:
\(\dfrac{3}{2}x^2-mx-4=0\)
\(\Leftrightarrow3x^2-2mx-8=0\)
ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt
Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=24\)
\(\Leftrightarrow m^2\cdot\dfrac{4}{9}-3\cdot\dfrac{-8}{3}=24\)
\(\Leftrightarrow m^2\cdot\dfrac{4}{9}=16\)
hay m=6 hoặc m=-6
la 64
duyet nhanh di