\(M\left(2m-1;m+3\right)\)với 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2018

Ta có: \(\hept{\begin{cases}3x-y=2m-1\\x+2y=3m+2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3x-2m+1\\x+2\left(3x-2m+1\right)=3m+2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=3x-2m+1\\7x-4m+2=3m+2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3x-2m+1\\7x=7m\end{cases}\Leftrightarrow\hept{\begin{cases}y=m+1\\x=m\end{cases}}}\)

Vây với mọi m, hệ phương trình luôn có nghiệm duy nhất (x ; y) = (m ; m + 1)

Độ dài đoạn thẳng OM bằng: \(\sqrt{m^2+\left(m+1\right)^2}=\sqrt{2m^2+2m+1}\)

Để M thuộc đường tròn \(\left(O;\sqrt{5}\right)\) thì \(\sqrt{2m^2+2m+1}=\sqrt{5}\Leftrightarrow2m^2+2m-4=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\)

13 tháng 3 2022

Gọi\(M ′ ( x ; y ) . Suy ra −−→ I M = ( − 9 ; − 1 ) , −−→ I M ′ = ( x − 2 ; y − 3 ) .\)

Ta có V(I,−2)(M)=M′⇔−−→IM′=−2−−→IMV(I,−2)(M)=M′⇔IM′→=−2IM→ ⇒{x−2=−2.(−9)y−3=−2.(−1)⇒{x−2=−2.(−9)y−3=−2.(−1) ⇔{x=20y=5⇒M′(20;5)

hỉu ko ?

13 tháng 3 2022

sai hay đúng vậy ?????????

T_T

mog đúng

26 tháng 4 2020

Mình nghĩ nên sửa đề y=2(m-1)x-m2+6 và parobol (P)y=x2

a) Với m=3 ta được (d): y=4x-3

Hoành độ giao điểm của đường thẳng (d) và parabol (P0 là nghiệm của phương trình \(x^2=4x-3\)

<=> x2-4x+3=0

<=> x2-3x-x+3=0

<=> x(x-3)-(x-3)=0

<=> (x-3)(x-1)=0

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\\x=3\Rightarrow y=9\end{cases}}}\)

Vậy giao điểm của (d) và (P) là A(1;1); B(3;9)

b) Phương trình hoành độ của (d) cắt (P) là nghiệm của phương trình x2-2(m-1)x-m2+6

<=> x2-2(m-1)x+m2-6=0 (1)

<=> (m-1)2-(m2-6)=7-2m

Đường thẳng (d) cắt (P) tại 2 điểm phân biệt khi và chỉ khi phương trình (1) có 1 nghiệm phân biệt

<=> 7-2m>0

<=> \(m< \frac{7}{2}\)(*)

Gọi x1;x2 là nghiệm của phương trình (1)

Khi đó thoe định lý Vi-et ta có:

\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1\cdot x_2+m^2=6\end{cases}}\)

Theo bài ra ta có: \(x_1^2+x_2^2=6\Leftrightarrow x_1+x_2^2+2x_1x_2=16\)

\(4\left(m^2-1\right)-2\left(m^2-6\right)=16\)

<=>2m2-8m=0

<=> m=0 hoặc m=4

m=0 (tmđk (*))

m=4 (ktmđk (*))

Vậy m=0 là giá trị cần tìm

24 tháng 5 2021

a, Thay m = -1/2 vào (d) ta được : 

\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)

Hoành độ giao điểm thỏa mãn phương trình 

\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)

\(\Delta=4-4\left(-3\right)=4+12=16>0\)

\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)

Vói x = -1 thì \(y=-2+3=1\)

Vớ x = 3 thì \(y=6+3=9\)

Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )

b, mình chưa học 

24 tháng 5 2021

\(y_1+y_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)

Xét phương trình hoành độ giao điểm của (d) và (P) ta có: 

\(x^2=2x-2m+2\)

\(\Leftrightarrow x^2-2x+2m-2=0\)

Theo hệ thức Vi-et ta có: 

\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)

Từ (1)  \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow4-4m+4=8\)

\(\Leftrightarrow m=0\)

vậy..

NV
23 tháng 5 2019

Phương trình hoành độ giao điểm: \(x^2-2mx+2m+3=0\)

\(\Delta'=m^2-2m-3>0\Rightarrow\left[{}\begin{matrix}m< -1\\m>3\end{matrix}\right.\)

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m+3\end{matrix}\right.\)

Do \(x_1\) là nghiệm nên \(x_1^2-2mx_1+2m+3=0\Rightarrow x_1^2-2mx_1=-\left(2m+3\right)\)

Ta có:

\(x_1\left(x_1^2-2mx_1\right)-\left(2m+3\right)x_2+3x_1x_2=-7\)

\(\Leftrightarrow-x_1\left(2m+3\right)-\left(2m+3\right)x_2+3x_1x_2+7=0\)

\(\Leftrightarrow-\left(2m+3\right)\left(x_1+x_2\right)+3x_1x_2+7=0\)

\(\Leftrightarrow-\left(2m+3\right).2m+3\left(2m+3\right)+7=0\)

Đến đây bạn tự giải nốt

NV
16 tháng 4 2019

Pt hoành độ giao điểm: \(x^2-2x-2m+1=0\)

\(\Delta'=1+2m-1=2m\ge0\Rightarrow m\ge0\)

a/ Bạn tự giải

b/ Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-2m+1\end{matrix}\right.\)

\(\left(x_1x_2\right)^2-x_2^2+\left(x_1x_2\right)^2-x_1^2=0\)

\(\Leftrightarrow2\left(x_1x_2\right)^2-\left(x_1+x_2\right)^2+2x_1x_2-8=0\)

\(\Leftrightarrow2\left(x_1x_2\right)^2+2x_1x_2-12=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1x_2=2\\x_1x_2=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-2m+1=2\\-2m+1=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\frac{1}{2}< 0\left(l\right)\\m=2\end{matrix}\right.\)

NV
16 tháng 4 2019

Thay m=0 vào giải thôi

\(x^2-2x+1=0\Rightarrow x=1\)

Thay \(x=1\) vào pt parabol hoặc đường thẳng tùy thích được \(y=1\)

Tọa độ điểm đó là \(A\left(1;1\right)\) hoặc thích đặt B, C, D, E, F gì đó tùy

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

PT hoành độ giao điểm:

\(\frac{1}{2}x^2-(2x-m+1)=0\)

\(\Leftrightarrow x^2-4x+2m-2=0(*)\)

Để (P) cắt (d) tại 2 điểm phân biệt thì $(*)$ phải có 2 nghiệm phân biệt.

Điều này xảy ra khi \(\Delta'=4-(2m-2)>0\Leftrightarrow m< 3\)

Khi đó, $x_1,x_2$ sẽ là 2 nghiệm của $(*)$ thỏa mãn:

\(\left\{\begin{matrix} x_1+x_2=4\\ x_1x_2=2m-2\end{matrix}\right.\) (định lý Vi-et)

Ta có:

\(x_1x_2(y_1+y_2)+48=0\)

\(\Leftrightarrow x_1x_2(2x_1-m+1+2x_2-m+1)+48=0\)

\(\Leftrightarrow x_1x_2(x_1+x_2-m+1)+24=0\)

\(\Leftrightarrow (2m-2)(4-m+1)+24=0\)

\(\Leftrightarrow -m^2+6m+7=0\Rightarrow m=7; m=-1\). Kết hợp với đk $m< 3$ suy ra $m=-1$