Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b: PTHĐGĐ là:
2x^2-(2m-2)x+m-1=0
Δ=(2m-2)^2-4*2*(m-1)
=4m^2-8m+4-8m+8
=4m^2-16m+12
=4m^2-2*2m*4+16-4=(2m-4)^2-4=(2m-6)(2m-2)
Để (d) cắt (P) tại 2 điểm pb thì (2m-6)(2m-2)>0
=>m>3 hoặc m<1
Bài 3:
Đặt \(a=m^2-4\)
\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến
\(\Leftrightarrow a< 0\)
\(\Leftrightarrow m^2-4< 0\)
\(\Leftrightarrow m^2< 4\)
\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)
\(\Leftrightarrow-2< m< 2\)
Vậy với \(-2< m< 2\)thì hàm số nghịch biến
\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)
\(\Leftrightarrow a>0\)
\(\Leftrightarrow m^2-4>0\)
\(\Leftrightarrow m^2>4\)
\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)
Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)
Phương trình hoành độ giao điểm là:
\(x^2-2x-m^2-m+3=0\)
\(\Delta=\left(-2\right)^2-4\cdot1\cdot\left(-m^2-m+3\right)\)
\(=4+4m^2+4m-12=4m^2+4m-8\)
\(=4\left(m+2\right)\left(m-1\right)\)
Để (P) tiếp xúc với (d) thì (m+2)(m-1)=0
=>m=-2(loại) hoặc m=1(nhận)
parabol (P): y = x 2 ; đường thẳng (d): y = 2x + m (m là tham số).
a) phương trình hoành độ giao điểm của (P) và (d) là:
x 2 = 2x + m ⇔ x 2 - 2x - m = 0
Δ'= 1 + m
(d) tiếp xúc với (P) khi phương trình hoành độ giao điểm có duy nhất 1 nghiệm
⇔ Δ'= 1 + m = 0 ⇔ m = -1
Khi đó hoành độ giao điểm là x = 1
a, bạn tự vẽ nhé
b, Gọi ptđt (D1) có dạng y = ax + b
(D1) // (D) \(\hept{\begin{cases}a=\frac{1}{2}\\b\ne2\end{cases}}\)
=> (D1) : y = x/2 + b
Hoành độ giao điểm tm pt
\(\frac{x^2}{4}=\frac{x}{2}+b\Leftrightarrow x^2=2x+4b\Leftrightarrow x^2-2x-4b=0\)
\(\Delta'=1-\left(-4b\right)=1+4b\)
Để (D1) tiếp xúc (P) hay pt có nghiệm kép
\(1+4b=0\Leftrightarrow b=-\frac{1}{4}\)
suy ra \(\left(D1\right):y=\frac{x}{2}-\frac{1}{4}\)
toạ độ M là tương giao của cái nào bạn ?
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}3x-1=-x+2\\y=-x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=2-\dfrac{3}{4}=\dfrac{5}{4}\end{matrix}\right.\)