Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có đồ thị hàm số y= a.x đi qua A(5;-7) nên ta được
yA =a.xA
\(\Rightarrow\)-7 = a. 5
a . 5 = -7
a= -7:5
a= -1,4
Vậy a = -1,4
Do điểm A( 5; -7) thuộc đồ thị hàm số nên thay x = 5 và y= -7 ta được:
-7 = a.5 ⇒ a = (-7)/5
Vì đồ thị hàm số y = ax đi qua điểm A(5;-7) nên ta có:
-7 = a.5
\(=>\) a = \(\frac{-7}{5}\)
Vậy hàm số a = \(\frac{-7}{5}\)
Ta có: (xo + 4)2 + (yo - 2)2 = 0
=> (xo + 4)2 = 0 => xo + 4 = 0
(yo - 2)2 = 0 => yo - 2 = 0
(Vì (xo + 4)2 \(\ge\)0; (yo - 2)2 \(\ge\)0)
Giải ra ta có xo = -4; yo =2
=> a = \(\frac{y}{x}\)=\(\frac{2}{-4}\)= \(\frac{1}{2}\)
Bạn tự vẽ hình nhé
Lời giải:
a) Vì $A(0;3)$ nên $A$ cũng thuộc đường thẳng $y=3$. Do đó $A,B$ cùng thuộc đường thẳng $y=3$
\(x_A=0\Rightarrow A\in Oy\) nên \(OA\) trùng với trục tung.
Do đo \(AB\perp OA\Rightarrow S_{AOB}=\frac{AB.AO}{2}(1)\)
\(B(x_0,y_0)=(y=ax)\cap (y=3)\Rightarrow y_0=3;x_0=\frac{y_0}{a}=\frac{3}{a}\)
\(\Rightarrow AB=\sqrt{(\frac{3}{a}-0)^2+(3-3)^2}=\frac{3}{a}(2)\) (do a>0)
\(OA=\sqrt{(0-0)^2+(3-0)^2}=3(3)\)
Từ \((1); (2); (3)\Rightarrow 1,5=S_{AOB}=\frac{\frac{3}{a}.3}{2}\Leftrightarrow a=3\)
b)
\(C(x_1,y_1)\in (y=3x)\Rightarrow y_1=3x_1\)
Do đó: \(\frac{x_1+1}{y_1+3}=\frac{x_1+1}{3x_1+3}=\frac{x_1+1}{3(x_1+1)}=\frac{1}{3}\)
ta có công thức: y=ax
thay y =-7,x=5 vào,ta đc:
-7=a.5
=>a=\(\dfrac{-7}{5}\)
vậy a=\(\dfrac{-7}{5}\)