K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 6 2020

Lời giải:

1.

$\overrightarrow{BC}=(2,4)\Rightarrow \overrightarrow{n_{BC}}=(-4,2)$

PTĐT chứa cạnh $BC$ là:

$-4(x-x_B)+2(y-y_B)=0\Leftrightarrow -2(x-4)+(y-3)=0$

$\Leftrightarrow -2x+y+5=0$

PT đường cao $AH$ nhận $\overrightarrow{BC}=(2,4)$ là vecto pháp tuyến nên có dạng:

$2(x-x_A)+4(y-y_A)=0$

$\Leftrightarrow x-2+2(y-1)=0\Leftrightarrow x+2y-4=0$

2.

Tọa độ điểm $G$:

$x_G=\frac{x_A+x_B+x_C}{3}=4$

$y_G=\frac{y_A+y_B+y_C}{3}=\frac{11}{3}$

Do $(G)$ tiếp xúc với $BC$ nên $R=d(G,BC)$

Có: $d(G,BC)=\frac{|-2x_G+y_G+5|}{\sqrt{(-2)^2+1^2}}=\frac{2\sqrt{5}}{15}$

Vậy PTĐTr cần tìm là: $(x-4)^2+(y-\frac{11}{3})^2=\frac{4}{45}$

21 tháng 4 2021

uBC(6;0)=>nAH(0,6) ( vì AH vuông góc với BC)

PTTQ của đg thẳng AH đi qua A là 

\(0\left(x-3\right)+6\left(y-0\right)=0< =>6y=0\)

b)\(d\left(C;AH\right)=R=\dfrac{\left|6.1\right|}{\sqrt[]{0^2+6^2}}=1\)

PT đg tròn tầm C tiếp xúc AH là 

\(\left(x-4\right)^2+\left(y-1\right)^2=1^2\)

1 tháng 5 2022

câu a cs gì đó sai rồi thì phải nAH Là =(6;0) luôn chứ

 

 

NV
21 tháng 4 2021

a.

\(\overrightarrow{BC}=\left(2;-3\right)\Rightarrow\) đường thẳng BC nhận (3;2) là 1 vtpt

Phương trình BC:

\(3\left(x-2\right)+2\left(y-3\right)=0\Leftrightarrow3x+2y-12=0\)

b.

Gọi G là trọng tâm ABC \(\Rightarrow G\left(\dfrac{7}{3};\dfrac{4}{3}\right)\)

(C) tiếp xúc BC \(\Leftrightarrow d\left(G;BC\right)=R\)

\(\Rightarrow R=\dfrac{\left|3.\dfrac{7}{3}+2.\dfrac{4}{3}-12\right|}{\sqrt{3^2+2^2}}=\dfrac{7\sqrt{13}}{39}\)

Phương trình: \(\left(x-\dfrac{7}{3}\right)^2+\left(y-\dfrac{4}{3}\right)^2=\dfrac{49}{117}\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Ta có: \(\overrightarrow {BC}  = \left( {3; - 4} \right)\)\( \Rightarrow \)VTPT của đường thẳng BC là \(\overrightarrow {{n_{BC}}}  = (4;3)\)

PT đường thẳng BC qua \(B(1;2)\), nhận \(\overrightarrow {{n_{BC}}}  = (4;3)\) làm VTPT là:

\(4(x - 1) + 3(y - 2) = 0 \Leftrightarrow 4x + 3y - 10 = 0\)

b) Ta có: \(\overrightarrow {BC}  = \left( {3; - 4} \right) \Rightarrow BC = \sqrt {{3^2} + {{( - 4)}^2}}  = 5\)

\(d(A,BC) = \frac{{\left| {4.( - 1) + 3.3 - 10} \right|}}{{\sqrt {{4^2} + {3^3}} }} = 1\)

\( \Rightarrow {S_{ABC}} = \frac{1}{2}.d(A,BC).BC = \frac{1}{2}.1.5 = \frac{5}{2}\)

c) Phương trình đường tròn tâm A tiếp xúc với đường thẳng BC có bán kính \(R = d(A,BC) = 1\) là:

\({(x + 1)^2} + {(y - 3)^2} = 1\)

NV
14 tháng 5 2021

a. 

\(\overrightarrow{BC}=\left(-2;-4\right)=-2\left(1;2\right)\Rightarrow\) đường thẳng BC nhận (1;2) là 1 vtcp

Phương trình BC: \(\left\{{}\begin{matrix}x=-1+t\\y=4+2t\end{matrix}\right.\)

b.

\(\overrightarrow{AB}=\left(-2;1\right)\Rightarrow R^2=AB^2=\left(-2\right)^2+1^2=5\)

Phương trình đường tròn: \(\left(x-1\right)^2+\left(y-3\right)^2=5\)

c.

\(\overrightarrow{AB}.\overrightarrow{BC}=-2.\left(-2\right)+1.\left(-4\right)=0\Rightarrow AB\perp BC\)

\(\Rightarrow H\) trùng B hay tọa độ H là: \(H\left(-1;4\right)\)

a: vecto BC=(2;-5)

=>VTPT là (5;2)

Phương trình (d) là:

5(x+1)+2(y-2)=0

=>5x+5+2y-4=0

=>5x+2y+1=0

b: Gọi (C): x^2+y^2-2ax-2by+c=0

Theo đề, ta có:

\(\left\{{}\begin{matrix}\left(-1\right)^2+2^2+2a-4b+c=0\\1^2+1^2-2a-2b+c=0\\9+16-6a+8b+c=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a-4b+c=-1-4=-5\\-2a-2b+c=-2\\-6a+8b+c=-25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{19}{8}\\b=-\dfrac{13}{4}\\c=-\dfrac{53}{4}\end{matrix}\right.\)

=>(C): x^2+y^2+19/4x+13/2y-53/4=0

=>x^2+2*x*19/8+361/64+y^2+2*y*13/4+169/16=1885/64

=>(x+19/8)^2+(y+13/4)^2=1885/64