\(y=-\frac{1}{2}x^2\).Tập hợp các giá trị của m đ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2015

Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình \(-\frac{1}{2}x^2=-m^2x+2-m\) (1)

để (d) cắt (P) tại 2 điểm pb A và B và nằm khác phía với trục tung<=> phương trình (1)  hay -x2 +2m2x + 2m - 4 = 0 có 2 nghiệm pb xA; xB trái dấu

<=> a.c < 0 <=> 4 - 2m < 0 <=> m > 2. Khi đó pt trên có 2 nghiệm xA; xB . Theo Vi -et ta có:

xA + xB = 2m2; xA xB = 4- 2m

để xA; x thoả mãn (xA + 1)(x + 1) = 17 <=> xA x+ xA +  xB + 1 = 17

<=>  (4  -2m) + 2m2 + 1 = 17 <=>  2m2 - 2m-12 = 0 <=>  m2 - m - 6 = 0 => m = 3; -2

Đối chiếu đk => m = 3

Vậy............. 

4 tháng 4 2017

a) ta có pt hoành độ giao điểm: \(2x^2=x+1\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{2}\end{matrix}\right.\)

tại x= 1 thì ta có tọa độ giao điểm A(1;2)

tại x=\(\dfrac{-1}{2}\) thì ta có tọa độ giao điểm B(\(\dfrac{-1}{2};\dfrac{1}{2}\))

còn câu b) để từ từ mình suy nghĩ rồi giải sau

6 tháng 4 2017

mình làm ra được câu b rồi

ta có pt hđgđ

\(2x^2=2mx-m-2x+2\)

\(\Leftrightarrow2x^2-\left(2m-2\right)x+\left(m-2\right)=0 \)

\(\Delta=m^2-4m+5>0\)

\(\Rightarrow X_A=\dfrac{m-1-\sqrt{m^2-4m+5}}{2};X_B=\dfrac{m-1+\sqrt{m^2-4m+5}}{2}\)

\(\Rightarrow Y_A=2\left(\dfrac{m-1-\sqrt{m^2-4m+5}}{2}\right)^2;Y_B=2\left(\dfrac{m-1+\sqrt{m^2-4m+5}}{2}\right)^2\)

29 tháng 12 2017

à làm được rồi, cảm ơn ^^!

Bài 2: 

Gọi (d): y=ax+b là phương trình đường thẳng cần tìm

Vì (d)//y=-x+2 nên a=-1

Vậy: y=-x+b

Thay x=1 vào (P), ta được:

\(y=1^2=1\)

Thay x=1 và y=1 vào y=-x+b, ta được:

b-1=1

hay b=2

AH
Akai Haruma
Giáo viên
23 tháng 5 2018

Lời giải:

Gọi pt đường thẳng (d) là \(y=kx+b\)

Vì $(d)$ đi qua điểm (1,2) nên \(2=k+b\Rightarrow b=2-k\)

Phương trình đường thẳng (d) được viết lại là: \(y=kx+2-k\)

a) PT hoành độ giao điểm giữa (d) và (P) là:

\(x^2-(kx+2-k)=0(*)\)

\(\Leftrightarrow x^2-kx+(k-2)=0\)

Ta thấy \(\Delta=k^2-4(k-2)=(k-2)^2+4\geq 4>0\) với mọi $k\neq 0$

Suy ra $(*)$ luôn có hai nghiệm phân biệt.

Do đó đường thằng $(d)$ luôn cắt $(P)$ tại hai điểm phân biệt.

b)

Nếu $x_A,x_B$ là hai hoành độ giao điểm thì nó chính là nghiệm của $(*)$

Áp dụng định lý Viete ta có: \(\left\{\begin{matrix} x_A+x_B=k\\ x_Ax_B=k-2\end{matrix}\right.\)

\(\Rightarrow x_A+x_B-x_Ax_B-2=k-(k-2)-2=0\)

Ta có đpcm.

23 tháng 5 2018

Em cảm ơn thầy (cô) rất nhiều ạ! :D

*) Em không biết rõ cách gọi nên nếu có gì sai thì em xin lỗi! :D

26 tháng 4 2020

Mình nghĩ nên sửa đề y=2(m-1)x-m2+6 và parobol (P)y=x2

a) Với m=3 ta được (d): y=4x-3

Hoành độ giao điểm của đường thẳng (d) và parabol (P0 là nghiệm của phương trình \(x^2=4x-3\)

<=> x2-4x+3=0

<=> x2-3x-x+3=0

<=> x(x-3)-(x-3)=0

<=> (x-3)(x-1)=0

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\\x=3\Rightarrow y=9\end{cases}}}\)

Vậy giao điểm của (d) và (P) là A(1;1); B(3;9)

b) Phương trình hoành độ của (d) cắt (P) là nghiệm của phương trình x2-2(m-1)x-m2+6

<=> x2-2(m-1)x+m2-6=0 (1)

<=> (m-1)2-(m2-6)=7-2m

Đường thẳng (d) cắt (P) tại 2 điểm phân biệt khi và chỉ khi phương trình (1) có 1 nghiệm phân biệt

<=> 7-2m>0

<=> \(m< \frac{7}{2}\)(*)

Gọi x1;x2 là nghiệm của phương trình (1)

Khi đó thoe định lý Vi-et ta có:

\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1\cdot x_2+m^2=6\end{cases}}\)

Theo bài ra ta có: \(x_1^2+x_2^2=6\Leftrightarrow x_1+x_2^2+2x_1x_2=16\)

\(4\left(m^2-1\right)-2\left(m^2-6\right)=16\)

<=>2m2-8m=0

<=> m=0 hoặc m=4

m=0 (tmđk (*))

m=4 (ktmđk (*))

Vậy m=0 là giá trị cần tìm