K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2019

 

a) Vì A, B thuộc (P) nên:

x A = − 1 ⇒ y A = 1 2 ⋅ - 1 2 = 1 2 x B = 2 ⇒ y B = 1 2 ⋅ 2 2 = 2 ⇒ A − 1 ; 1 2  ,  B ( 2 ; 2 )

b) Gọi phương trình đường thẳng (d) là y = ax + b.

Ta có hệ phương trình:

− a + b = 1 2 2 a + b = 2 ⇔ 3 a = 3 2 2 a + b = 2 ⇔ a = 1 2 b = 1

Vậy (d):  y = 1 2 x + 1 .

c) (d) cắt trục Oy tại điểm C(0; 1) và cắt trục Ox tại điểm D(– 2; 0)

=>  OC = 1 và OD = 2

Gọi h là khoảng cách từ O tới (d).

Áp dụng hệ thức về cạnh và đường cao vào  vuông OCD, ta có:

1 h 2 = 1 O C 2 + 1 O D 2 = 1 1 2 + 1 2 2 = 5 4 ⇒ h = 2 5 5

Vậy khoảng cách từ gốc O tới (d) là  2 5 5 .

 

b: Phương trình hoành độ giao điểm của (3) và (1) là:

2x=-x+6

hay x=2

Thay x=2 vào (1), ta được:

\(y=2\cdot2=4\)

Vậy: A(2;4)

Phương trình hoành độ giao điểm của (3) và (2) là:

-x+6=0.5x

\(\Leftrightarrow-1.5x=-6\)

hay x=4

Thay x=4 vào y=-x+6, ta được:

y=6-4=2

Vậy: A(4;2)

NV
23 tháng 2 2021

Ta có \(M\left(2;-1\right)\)

Gọi phương trình đường thẳng d qua M có dạng: \(y=ax+b\)

\(\Rightarrow-1=2a+b\Rightarrow b=-2a-1\)

\(\Rightarrow y=ax-2a-1\)

Để d cắt 2 trục tọa độ \(\Rightarrow a\ne\left\{0;-\dfrac{1}{2}\right\}\)

\(\Rightarrow A\left(\dfrac{2a+1}{a};0\right)\) ; \(B\left(0;-2a-1\right)\) \(\Rightarrow OA=\left|x_A\right|=\left|\dfrac{2a+1}{a}\right|\) ; \(OB=\left|y_B\right|=\left|2a+1\right|\)

Ta có: \(S_{OMA}=\dfrac{1}{2}\left|y_M\right|.OA=\dfrac{1}{2}\left|\dfrac{2a+1}{a}\right|\)

\(S_{OMB}=\dfrac{1}{2}\left|x_M\right|.OB=\left|2a+1\right|\)

\(\Rightarrow\dfrac{1}{2}\left|\dfrac{2a+1}{a}\right|=\left|2a+1\right|\Leftrightarrow\dfrac{1}{2\left|a\right|}=1\Rightarrow\left[{}\begin{matrix}a=\dfrac{1}{2}\\a=-\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

Phương trình: \(y=\dfrac{1}{2}x-2\)

12 tháng 9 2021

vì sao a lại khác -1/2 vậy ạ

a: F(-1)=1/2(-1)^2=1/2

=>A(-1;1/2)

f(2)=1/2*2^2=2

=>B(2;2)

Theo đề, ta có hệ:

-m+n=1/2 và 2m+n=2

=>m=1/2 và n=1

b: O(0;0); A(-1;0,5); B(2;2)

\(OA=\sqrt{\left(-1-0\right)^2+0,5^2}=\dfrac{\sqrt{5}}{2}\)

\(OB=\sqrt{2^2+2^2}=2\sqrt{2}\)

\(AB=\sqrt{\left(2+1\right)^2+\left(2-0,5\right)^2}=\dfrac{3}{2}\sqrt{5}\)

\(cosO=\dfrac{OA^2+OB^2-AB^2}{2\cdot OA\cdot OB}=\dfrac{-1}{\sqrt{10}}\)

=>\(sinO=\dfrac{3}{\sqrt{10}}\)

\(S_{OAB}=\dfrac{1}{2}\cdot\dfrac{\sqrt{5}}{2}\cdot2\sqrt{2}\cdot\dfrac{3}{\sqrt{10}}=\dfrac{3}{2}\)

=>\(OH=\dfrac{2\cdot\dfrac{3}{2}}{\dfrac{3}{2}\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)

8 tháng 4 2021

Theo Cô si       4x+\frac{1}{4x}\ge2  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014

Hơn nữa    A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.  \Leftrightarrow x=\dfrac{1}{4} .

Vậy  GTNN  =  2014

21 tháng 12 2020

y=ax-b hả bạn

 

 

21 tháng 12 2020

a, Từ giả thiết suy ra \(\left\{{}\begin{matrix}a+b=-2\\-2a+b=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{3}\\b=-\dfrac{1}{3}\end{matrix}\right.\Rightarrow y=-\dfrac{5}{3}x-\dfrac{1}{3}\)

b, 

c, Phương trình hoành độ giao điểm 

\(-\dfrac{5}{3}x-\dfrac{1}{3}=x-3\Leftrightarrow x=1\Rightarrow y=-2\Rightarrow M\left(1;-2\right)\)

d1, \(tanMPQ=-\left(-\dfrac{5}{3}\right)=\dfrac{5}{3}\Rightarrow\widehat{MPQ}\approx59^o\)

d2, \(P\left(-\dfrac{1}{5};0\right);Q\left(3;0\right);M\left(1;-2\right)\)

Chu vi \(P=PQ+QM+MP=\dfrac{16}{5}+2\sqrt{2}+\dfrac{2\sqrt{34}}{5}\)

\(p=\dfrac{\dfrac{16}{5}+2\sqrt{2}+\dfrac{2\sqrt{34}}{5}}{2}\)

Diện tích \(S=\sqrt{p\left(p-\dfrac{16}{5}\right)\left(p-2\sqrt{2}\right)\left(p-\dfrac{2\sqrt{34}}{5}\right)}=...\)