K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2021

a) Chọn điểm O là giao điểm của 2 đường chéo của hình chữ nhật ABCD
⇒ PO là đường trung bình của △ CAM
⇒ PO // AM ⇒ BD//AM
⇒ Tứ giác AMDB là hình thang
b)   Từ a ta có: có AM // BD
⇒     \(\widehat{A_1}=\widehat{B_1}\) ( đồng vị )
Mà △ OAB cân tại O ( vì ABCD là hình chữ nhật )
⇒   \(\widehat{A_2}=\widehat{B_1}\)
⇒  \(\widehat{A_1}=\widehat{A_2}\)    \(\left(1\right)\)
Gọi I là giao điểm của 2 đường chéo của hình chữ nhật AEMF
⇒     △ IEA cân tại I
⇒     \(\widehat{E_1}=\widehat{A_1}\)   \(\left(2\right)\)
Từ \(\left(1\right)\)\(\left(2\right)\) ⇒  \(\widehat{E_1}=\widehat{A_1}\) ( ở vị trí đồng vị )
⇒ EF // AC  \(\left(3\right)\)
     Mặt khác IP là đường trung bình của △ MAC ( do I,P là trung điểm của AM và BD )
⇒  IP //  AC   \(\left(4\right)\)
Từ \(\left(3\right)\)\(\left(4\right)\) ⇒ EF  // IP ⇒  Ba điểm E, F, P thẳng hàng
c) Xét△ MAF và △ DBA có:
\(\widehat{MFA}=\widehat{DAB}\)  \(=90^o\)
\(\widehat{A_1}=\widehat{B_1}\) ( cmt ) ;  \(\widehat{A_1}=\widehat{M_1}\)   ( so le trong )
⇒ \(\widehat{B_1}=\widehat{M_1}\)
⇒△ MAF ∼ △ DBA ( g - g )
\(\dfrac{MF}{DA}=\dfrac{AF}{BA}\)    ⇒    \(\dfrac{MF}{AF}=\dfrac{DA}{BA}\)   ( không đổi )

PTHĐGĐ là;
x^2-2mx-3+2m=0

Δ=(-2m)^2-4(2m-3)

=4m^2-8m+12

=4m^2-8m+4+8

=(2m-2)^2+8>0

=>(P) luôn cắt (d) tại hai điểm phân biệt

x1^2+x2^2=14

=>(x1+x2)^2-2x1x2=14

=>(2m)^2-2(2m-3)=14

=>4m^2-4m+6-14=0

=>4m^2-4m-8=0

=>m^2-m-2=0

=>(m-2)(m+1)=0

=>m=2 hoặc m=-1