K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

NV
27 tháng 7 2021

Phương trình (C1) chắc chắn sai rồi em

30 tháng 3 2017

Gọi R là bán kính của đường tròn (C)

(C) và C1 tiếp xúc ngoài với nhau, cho ta:

MF1 = R1+ R (1)

(C) và C2 tiếp xúc ngoài với nhau, cho ta:

MF2 = R2 – R (2)

Từ (1) VÀ (2) ta được

MF1 + MF2 = R1+ R2= R không đổi

Điểm M có tổng các khoảng cách MF1 + MF2 đến hai điểm cố định F1 và F2 bằng một độ dài không đổi R1+ R2

Vậy tập hợp điểm M là đường elip, có các tiêu điểm F1 và F2 và có tiêu cực :

F1 .F2 = R1+ R2

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

29 tháng 7 2021

1.

\(\left(C_1\right):\left(x-5\right)^2+y^2=25\Rightarrow\) Tâm \(I_1=\left(5;0\right);R_1=5\)

\(\left(C_2\right):\left(x+2\right)^2+\left(y-1\right)^2=25\Rightarrow\) Tâm \(I_2=\left(-2;1\right);R_2=5\)

2.

\(I_1I_2=\sqrt{\left(-2-5\right)^2+\left(1-0\right)^2}=5\sqrt{2}>R_1\)

\(\Rightarrow\) 2 đường tròn ngoài nhau

11 tháng 4 2016

Tọa độ điểm A, B là nghiệm của hệ phương trình :

\(\begin{cases}\left(x+1\right)^2+\left(y-2\right)^2=13\\x-5y-2=0\end{cases}\)   \(\Leftrightarrow\begin{cases}26y^2+26y=0\\x=5y+2\end{cases}\)

                                            \(\Leftrightarrow\begin{cases}\begin{cases}x=2\\y=0\end{cases}\\\begin{cases}x=-3\\y=-1\end{cases}\end{cases}\)
\(\Rightarrow A\left(2;0\right);B\left(-3;-1\right)\) hoặc \(A\left(-3;-1\right);B\left(2;0\right)\)

Vì tam giác ABC vuông tại B và nội tiếp đường tròn (C) nên AC là đường kính của đường tròn (C). Hay tâm \(I\left(-1;2\right)\) là trung điểm của AC

Khi đó : \(A\left(2;0\right);B\left(-3;-1\right)\Rightarrow C\left(-4;4\right)\)

            \(A\left(-3;-1\right);B\left(2;0\right)\Rightarrow C\left(1;5\right)\)

Vậy \(C\left(-4;4\right)\) hoặc \(C\left(1;5\right)\)