K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2021

Chu vi: \(P=F_1F_2+MF_1+MF_2=2c+2a=2\sqrt{a^2-b^2}+2a=2\sqrt{169-25}+2.13=50\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Ta có:

\(\overrightarrow {{F_1}M}  = \left( {x + c;y} \right) \Rightarrow {F_1}M = \sqrt {{{\left( {x + c} \right)}^2} + {y^2}} \)

\(\overrightarrow {{F_2}M}  = \left( {x - c;y} \right) \Rightarrow {F_2}M = \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} \)

b) Ta có \(M(x;y) \in (E)\) nên \({F_1}M + {F_2}M = 2a \Leftrightarrow \sqrt {{{\left( {x + c} \right)}^2} + {y^2}}  + \sqrt {{{\left( {x - c} \right)}^2} + {y^2}}  = 2a\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

26 tháng 4 2017

F1 F2 A1 A2 B2 B1 y x o

Viết lại phương trình (E):\(\dfrac{x^2}{25}+\dfrac{y^2}{9}=1\)

a) Từ phương trình ta có: a2=25=>a=5 =>A1(-5;0) A2(5;0)

b2=9=>b=3 =>B1(0;-3) B2(0;3)

c2=a2-b2=25-9=16 =>c=4

=> F1(-4;0) F2(4;0)

b) Giả sử tọa độ điểm M(m;n)

MF1 góc với MF2 => (m+4)(m-4) + n2=0

<=> m2+n2=16 =>9m2+9n2=144(1)

Do M thuộc (E) nên 9m2+25n2=225(2)

Trừ vế với vế của (2) cho (1) ta được 16n2=81

=> \(n=_-^+\dfrac{9}{4}\)

với n\(=\dfrac{9}{4}\)=> m=\(\dfrac{5\sqrt{7}}{4}\)

với n\(=-\dfrac{9}{4}\)=> m\(=\dfrac{5\sqrt{7}}{4}\)

Vậy tọa độ M thỏa mãn là \(\left(\dfrac{5\sqrt{7}}{4};\dfrac{9}{4}\right)\)\(\left(\dfrac{5\sqrt{7}}{4};-\dfrac{9}{4}\right)\)

21 tháng 4 2017

phương trình (E) có dạng:

\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\)

Vì (E) đi qua điểm M nên

\(\dfrac{\dfrac{9}{5}}{a^2}+\dfrac{\dfrac{16}{5}}{b^2}=1\)

\(\dfrac{9}{a^2}+\dfrac{16}{b^2}=5\)(1)

Do tam giác \(MF_1F_2\)vuông tại M

Nên M thuộc đường tròn \(x^2+y^2=c^2\)

\(\dfrac{9}{5}+\dfrac{16}{5}=c^2\)

\(5=c^2\)

\(a^2-b^2=5\)

\(a^2=5+b^2\)

Thế vào pt(1)

\(9b^2+16a^2=5a^2b^2\)

\(9b^2+16\left(5+b^2\right)=5b^2\left(5+b^2\right)\)

\(5b^4-80=0\)

\(b^2=\pm4\)

\(\Rightarrow b^2=4\Rightarrow a^2=9\)

\(\left(E\right):\dfrac{x^2}{4}+\dfrac{y^2}{9}=1\)

\(\Rightarrow c=\sqrt{5};e=\dfrac{\sqrt{5}}{2}\)

20 tháng 4 2023

Gọi M(x,y) 

Trong (E) có : \(c=\sqrt{a^2-b^2}=\sqrt{5}\)

Từ đó ta có : \(F_1\left(\sqrt{5};0\right);F_2\left(-\sqrt{5};0\right)\)\(F_1F_2=2\sqrt{5}\) 

=> \(\overrightarrow{F_1M}\left(x-\sqrt{5};y\right)\Rightarrow F_1M^2=\left(x-\sqrt{5}\right)^2+y^2\)

tương tự \(F_2M^2=\left(x+\sqrt{5}\right)^2+y^2\)

Do \(\widehat{F_1MF_2}=90^{\text{o}}\) nên tam giác F1MF2 vuông tại M

=> F1M2 + F2M2 = F1F22

<=>  \(\left(x-\sqrt{5}\right)^2+y^2+\left(x+\sqrt{5}\right)^2+y^2=20\)

\(\Leftrightarrow x^2+y^2=5\)

Lại có \(M\in\left(E\right)\Rightarrow\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\)

từ đó ta có hệ \(\left\{{}\begin{matrix}x^2+y^2=5\\\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=\dfrac{9}{5}\\y^2=\dfrac{16}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{3\sqrt{5}}{5}\\y=\pm\dfrac{4\sqrt{5}}{5}\end{matrix}\right.\)

 

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Do \({A_1}{F_1} = a - c\) và \({A_1}{F_2} = a - c\) nện\({A_1}{F_1} + {A_1}{F_2} = 2a\).Vậy \({A_1}\left( { - a;{\rm{ }}0} \right)\) thuộc elip (E).

Mà A (-1; 0) thuộc trục Ox nên \({A_1}\left( { - a;{\rm{ }}0} \right)\) là giao điểm của elip (E) với trục Ox.

Tương tự, ta chứng minh được \({A_2}\left( {a;{\rm{ }}0} \right)\) là giao điểm của clip (E) với trục Ox.

b) Ta có:\({B_2}{F_2} = \sqrt {{{\left( {c - 0} \right)}^2} + {{\left( {0 - b} \right)}^2}}  = \sqrt {{c^2} + {b^2}}  = \sqrt {{a^2}}  = a\).Vì \({B_2}{F_1} = {B_2}{F_2}\) nên\({B_2}{F_1} + {B_2}{F_2} = a + a = 2a\). Do đó, \({B_2}\left( {0{\rm{ }};{\rm{ }}b} \right)\) thuộc elip (E). Mà \({B_2}\left( {0{\rm{ }};{\rm{ }}b} \right)\)thuộc trục Oy nên \({B_2}\left( {0{\rm{ }};{\rm{ }}b} \right)\)là giao điểm của elip (E) với trục Oy.

Tương tự, ta chứng minh được: \({B_1}\left( {0{\rm{ }};{\rm{  - }}b} \right)\)là giao ddiemr của elip (E) với trục Oy.

Như vậy, elip (E) đi qua bốn điểm \({A_1}\left( { - a;{\rm{ }}0} \right)\)\({A_2}\left( {a{\rm{ }};{\rm{ }}0} \right)\)\({B_1}\left( {0; - {\rm{ }}b} \right)\)\({B_2}\left( {0;{\rm{ }}b} \right)\)