K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 12 2020

Cách 1:

Do M thuộc d, gọi tọa độ M có dạng \(M\left(2m-2;m\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(2m-2;m-6\right)\\\overrightarrow{BM}=\left(2m-4;m-5\right)\end{matrix}\right.\)

Đặt \(T=MA+MB=\sqrt{\left(2m-2\right)^2+\left(m-6\right)^2}+\sqrt{\left(2m-4\right)^2+\left(m-5\right)^2}\)

\(T=\sqrt{5m^2-20m+40}+\sqrt{5m^2-26m+41}\)

\(T=\sqrt{5\left(m-2\right)^2+\left(2\sqrt{5}\right)^2}+\sqrt{5\left(\dfrac{13}{5}-m\right)^2+\left(\dfrac{6}{\sqrt{5}}\right)^2}\)

\(T\ge\sqrt{5\left(m-2+\dfrac{13}{5}-m\right)^2+\left(2\sqrt{5}+\dfrac{6}{\sqrt{5}}\right)^2}=\sqrt{53}\)

Dấu "=" xảy ra khi và chỉ khi:

\(6\left(m-2\right)=10\left(\dfrac{13}{5}-m\right)\Leftrightarrow m=\dfrac{19}{8}\)

\(\Rightarrow M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)

NV
12 tháng 12 2020

Cách 2:

Thay tọa độ A và B vào pt (d) được 2 giá trị cùng dấu âm \(\Rightarrow A;B\) nằm cùng phía so với (d)

Gọi d' là đường thẳng qua A và vuông góc với d \(\Rightarrow\) pt d' có dạng:

\(2\left(x-0\right)+1\left(y-6\right)=0\Leftrightarrow2x+y-6=0\)

Gọi C là giao điểm của d và d' \(\Rightarrow\left\{{}\begin{matrix}x-2y+2=0\\2x+y-6=0\end{matrix}\right.\)

\(\Rightarrow C\left(2;2\right)\)

Gọi D là điểm đối xứng với A qua d \(\Leftrightarrow C\) là trung điểm AD \(\Rightarrow D\left(4;-2\right)\)

Phương trình BD có dạng: \(7\left(x-2\right)+2\left(y-5\right)=0\Leftrightarrow7x+2y-24=0\)

\(MA+MB\) nhỏ nhất khi và chỉ khi M là giao điểm của BD

\(\Rightarrow\) Tọa độ M thỏa mãn: \(\left\{{}\begin{matrix}7x+2y-24=0\\x-2y+2=0\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)

13 tháng 1 2023

Gọi `M(x;3/2x+5/2)`

Ta có:`|\vec{MA}-2\vec{MB}|`

`=|(4-x;7-3/2x-5/2)-2(2-x;1-3/2x-5/2)|`

`=|(x;3/2x+17/2)|`

`=\sqrt{x^2+(3/2x+17/2)^2}`

`=\sqrt{x^2+9/4x^2+51/2x+289/4}`

`=\sqrt{13/4x^2+51/2x+289/4}`

`=\sqrt{(\sqrt{13}/2 x+[51\sqrt{13}]/26)^2+289/13} >= [17\sqrt{13}]/13`

Dấu "`=`" xảy ra `<=>\sqrt{13}/2x+[51\sqrt{13}]/26=0<=>x=-51/13`

   `=>M(-51/13;-44/13)`

20 tháng 3 2018

Dễ thấy d // d’, ta có d ∩ Oy = A(0; 1); d’ ∩ Oy = A’(0; -4). Phép đối xứng tâm I biến Oy thành Oy thì I thuộc trục Oy; biến d thành d’ thì I là trung điểm của AA’ ⇒ I(0; -3/2).

Đáp án D

24 tháng 2 2019

Giải bài 3 trang 7 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 7 sgk Hình học 11 | Để học tốt Toán 11

c) Đường thẳng d có vecto pháp tuyến là n(1;-2) nên 1 vecto chỉ phương của d là(2; 1)

=> Vecto v không cùng phương với vecto chỉ phương của đường thẳng d

=> Qua phép tịnh tiến v biến đường thẳng d thành đường thẳng d’ song song với d.

Nên đường thẳng d’ có dạng : x- 2y + m= 0

Lại có B(-1; 1) d nên B’(-2;3) d’

Thay tọa độ điểm B’ vào phương trình d’ ta được:

-2 -2.3 +m =0 ⇔ m= 8

Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0

3 tháng 6 2021

\(T=\left(x_A-2y_A+2\right)\left(x_B-2y_B+2\right)=60>0\)

=> A và B nằm cùng phía so với d

a)Lấy B' đối xứng với B qua d

=> d là trung trực của BB'

Có \(MA+MB=MA+MB'\)

Để MA+MB nn <=> MA+MB' nhỏ nhất <=> M;A;B' thẳng hàng <=> \(\overrightarrow{AM};\overrightarrow{AB'}\) cùng phương

\(BB'\left\{{}\begin{matrix}quaB\left(2;5\right)\\\perp d\Rightarrow vtcp\overrightarrow{n}\left(2;1\right)\end{matrix}\right.\)

\(\Rightarrow BB':2x+y-9=0\)

Gọi \(F=BB'\cap d\) \(\Rightarrow F\left(\dfrac{16}{5};\dfrac{13}{5}\right)\)

F là trung điểm của BB' \(\Rightarrow B'\left(\dfrac{22}{5};\dfrac{1}{5}\right)\)

\(M\in\left(d\right)\Rightarrow M\left(2t-2;t\right)\)

\(\Rightarrow\overrightarrow{AB'}\left(\dfrac{22}{5};-\dfrac{29}{5}\right)\);\(\overrightarrow{AM}\left(2t-2;t-6\right)\)

\(\overrightarrow{AM};\overrightarrow{AB'}\) cp <=> \(\dfrac{22}{5}\left(t-6\right)=-\dfrac{29}{5}\left(2t-2\right)\)

<=>\(t=\dfrac{19}{8}\)

Vậy \(M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)

3 tháng 6 2021

b) Có \(MA-MB\le AB\)

\(\Leftrightarrow\left|MA-MB\right|\le AB\)

\(\left|MA-MB\right|\) lớn nhất <=> M;A;B thẳng hàng <=> \(\overrightarrow{AM};\overrightarrow{AB}\) cp

\(M\in\left(2t-2;t\right)\)

\(\Rightarrow\overrightarrow{AM}\left(2t-2;t-6\right)\)\(\overrightarrow{AB}\left(2;-1\right)\)

\(\overrightarrow{AM};\overrightarrow{AB}\) cp <=> \(-1\left(2t-2\right)=2\left(t-6\right)\)

\(\Leftrightarrow t=\dfrac{7}{2}\)

\(\Rightarrow\) \(M\left(5;\dfrac{7}{2}\right)\)

18 tháng 5 2021

I B A C M D

Đường tròn \(\left(C\right):\left(x-1\right)^2+\left(y-1\right)^2=25\) có tâm \(I\left(1;1\right)\) và bán kính \(R=5\)

\(\overrightarrow{IA}=\left(6;8\right)\Rightarrow IA=10=2R\)=> Đường tròn (C) chia đôi IA tại C

Gọi D là trung điểm IC, ta có: \(\frac{ID}{IM}=\frac{1}{2}=\frac{IM}{IA}\)=> \(\Delta\)IDM ~ \(\Delta\)IMA (c.g.c), từ đây MA=2MD

Suy ra \(P=2\left(MD+MB\right)\ge2BD\)(không đổi)

Dấu "=" xảy ra khi M thuộc đoạn BD hay M là giao điểm của đoạn BD với (C) 

*) Tìm M:

Ta có: C là trung điểm IA => \(C\left(4;5\right)\), D là trung điểm IC => \(D\left(\frac{5}{2};3\right)\)

\(\overrightarrow{BD}=\left(\frac{5}{2};-5\right)\Rightarrow BD:\hept{\begin{cases}x=\frac{5}{2}t\\y=8-5t\end{cases}}\); vì M thuộc BD nên \(M\left(\frac{5}{2}t;8-5t\right)\)

\(\overrightarrow{IM}=\left(\frac{5}{2}t-1;7-5t\right)\Rightarrow IM^2=\left(\frac{5}{2}t-1\right)^2+\left(7-5t\right)^2=R^2=25\)

\(\Leftrightarrow\orbr{\begin{cases}t=2\\t=\frac{2}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}M\left(5;-2\right)\\M\left(1;6\right)\end{cases}}\)

Nếu \(M\left(5;-2\right)\)thì \(\overrightarrow{MB}=\left(-5;10\right);\overrightarrow{MD}=\left(-\frac{5}{2};5\right)\Rightarrow\overrightarrow{MB}=2\overrightarrow{MD}\)=> M nằm ngoài đoạn BD (L)

Vậy \(M\left(1;6\right)\).

30 tháng 9 2019

* Ta có: ĐO (A) = A’ nên O là trung điểm của AA’

Áp dụng công thức tính trung điểm ta có:

Giải bài tập Đại số 11 | Để học tốt Toán 11

* Ta tìm ảnh của đường thẳng d qua phép đối xứng tâm O.

Do điểm O d nên qua phép đối xứng tâm O biến đường thẳng d thành đường thẳng d’// d

=> Đường thẳng d’ có dạng: x- 2y + m =0

Lấy điểm B(-3; 0)∈ d, ĐO(B) = B’∈ d’

Giải bài tập Đại số 11 | Để học tốt Toán 11

Điểm B’ (3;0) thuộc d’ nên: 3-2.0+ m = 0 ⇔ m= -3

Vậy phương trình đường thẳng d’: x- 2y – 3= 0