Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi `M(x;3/2x+5/2)`
Ta có:`|\vec{MA}-2\vec{MB}|`
`=|(4-x;7-3/2x-5/2)-2(2-x;1-3/2x-5/2)|`
`=|(x;3/2x+17/2)|`
`=\sqrt{x^2+(3/2x+17/2)^2}`
`=\sqrt{x^2+9/4x^2+51/2x+289/4}`
`=\sqrt{13/4x^2+51/2x+289/4}`
`=\sqrt{(\sqrt{13}/2 x+[51\sqrt{13}]/26)^2+289/13} >= [17\sqrt{13}]/13`
Dấu "`=`" xảy ra `<=>\sqrt{13}/2x+[51\sqrt{13}]/26=0<=>x=-51/13`
`=>M(-51/13;-44/13)`
Dễ thấy d // d’, ta có d ∩ Oy = A(0; 1); d’ ∩ Oy = A’(0; -4). Phép đối xứng tâm I biến Oy thành Oy thì I thuộc trục Oy; biến d thành d’ thì I là trung điểm của AA’ ⇒ I(0; -3/2).
Đáp án D
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
\(T=\left(x_A-2y_A+2\right)\left(x_B-2y_B+2\right)=60>0\)
=> A và B nằm cùng phía so với d
a)Lấy B' đối xứng với B qua d
=> d là trung trực của BB'
Có \(MA+MB=MA+MB'\)
Để MA+MB nn <=> MA+MB' nhỏ nhất <=> M;A;B' thẳng hàng <=> \(\overrightarrow{AM};\overrightarrow{AB'}\) cùng phương
\(BB'\left\{{}\begin{matrix}quaB\left(2;5\right)\\\perp d\Rightarrow vtcp\overrightarrow{n}\left(2;1\right)\end{matrix}\right.\)
\(\Rightarrow BB':2x+y-9=0\)
Gọi \(F=BB'\cap d\) \(\Rightarrow F\left(\dfrac{16}{5};\dfrac{13}{5}\right)\)
F là trung điểm của BB' \(\Rightarrow B'\left(\dfrac{22}{5};\dfrac{1}{5}\right)\)
\(M\in\left(d\right)\Rightarrow M\left(2t-2;t\right)\)
\(\Rightarrow\overrightarrow{AB'}\left(\dfrac{22}{5};-\dfrac{29}{5}\right)\);\(\overrightarrow{AM}\left(2t-2;t-6\right)\)
\(\overrightarrow{AM};\overrightarrow{AB'}\) cp <=> \(\dfrac{22}{5}\left(t-6\right)=-\dfrac{29}{5}\left(2t-2\right)\)
<=>\(t=\dfrac{19}{8}\)
Vậy \(M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)
b) Có \(MA-MB\le AB\)
\(\Leftrightarrow\left|MA-MB\right|\le AB\)
\(\left|MA-MB\right|\) lớn nhất <=> M;A;B thẳng hàng <=> \(\overrightarrow{AM};\overrightarrow{AB}\) cp
\(M\in\left(2t-2;t\right)\)
\(\Rightarrow\overrightarrow{AM}\left(2t-2;t-6\right)\); \(\overrightarrow{AB}\left(2;-1\right)\)
\(\overrightarrow{AM};\overrightarrow{AB}\) cp <=> \(-1\left(2t-2\right)=2\left(t-6\right)\)
\(\Leftrightarrow t=\dfrac{7}{2}\)
\(\Rightarrow\) \(M\left(5;\dfrac{7}{2}\right)\)
Đường tròn \(\left(C\right):\left(x-1\right)^2+\left(y-1\right)^2=25\) có tâm \(I\left(1;1\right)\) và bán kính \(R=5\)
\(\overrightarrow{IA}=\left(6;8\right)\Rightarrow IA=10=2R\)=> Đường tròn (C) chia đôi IA tại C
Gọi D là trung điểm IC, ta có: \(\frac{ID}{IM}=\frac{1}{2}=\frac{IM}{IA}\)=> \(\Delta\)IDM ~ \(\Delta\)IMA (c.g.c), từ đây MA=2MD
Suy ra \(P=2\left(MD+MB\right)\ge2BD\)(không đổi)
Dấu "=" xảy ra khi M thuộc đoạn BD hay M là giao điểm của đoạn BD với (C)
*) Tìm M:
Ta có: C là trung điểm IA => \(C\left(4;5\right)\), D là trung điểm IC => \(D\left(\frac{5}{2};3\right)\)
\(\overrightarrow{BD}=\left(\frac{5}{2};-5\right)\Rightarrow BD:\hept{\begin{cases}x=\frac{5}{2}t\\y=8-5t\end{cases}}\); vì M thuộc BD nên \(M\left(\frac{5}{2}t;8-5t\right)\)
\(\overrightarrow{IM}=\left(\frac{5}{2}t-1;7-5t\right)\Rightarrow IM^2=\left(\frac{5}{2}t-1\right)^2+\left(7-5t\right)^2=R^2=25\)
\(\Leftrightarrow\orbr{\begin{cases}t=2\\t=\frac{2}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}M\left(5;-2\right)\\M\left(1;6\right)\end{cases}}\)
Nếu \(M\left(5;-2\right)\)thì \(\overrightarrow{MB}=\left(-5;10\right);\overrightarrow{MD}=\left(-\frac{5}{2};5\right)\Rightarrow\overrightarrow{MB}=2\overrightarrow{MD}\)=> M nằm ngoài đoạn BD (L)
Vậy \(M\left(1;6\right)\).
* Ta có: ĐO (A) = A’ nên O là trung điểm của AA’
Áp dụng công thức tính trung điểm ta có:
* Ta tìm ảnh của đường thẳng d qua phép đối xứng tâm O.
Do điểm O d nên qua phép đối xứng tâm O biến đường thẳng d thành đường thẳng d’// d
=> Đường thẳng d’ có dạng: x- 2y + m =0
Lấy điểm B(-3; 0)∈ d, ĐO(B) = B’∈ d’
Điểm B’ (3;0) thuộc d’ nên: 3-2.0+ m = 0 ⇔ m= -3
Vậy phương trình đường thẳng d’: x- 2y – 3= 0
Cách 1:
Do M thuộc d, gọi tọa độ M có dạng \(M\left(2m-2;m\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(2m-2;m-6\right)\\\overrightarrow{BM}=\left(2m-4;m-5\right)\end{matrix}\right.\)
Đặt \(T=MA+MB=\sqrt{\left(2m-2\right)^2+\left(m-6\right)^2}+\sqrt{\left(2m-4\right)^2+\left(m-5\right)^2}\)
\(T=\sqrt{5m^2-20m+40}+\sqrt{5m^2-26m+41}\)
\(T=\sqrt{5\left(m-2\right)^2+\left(2\sqrt{5}\right)^2}+\sqrt{5\left(\dfrac{13}{5}-m\right)^2+\left(\dfrac{6}{\sqrt{5}}\right)^2}\)
\(T\ge\sqrt{5\left(m-2+\dfrac{13}{5}-m\right)^2+\left(2\sqrt{5}+\dfrac{6}{\sqrt{5}}\right)^2}=\sqrt{53}\)
Dấu "=" xảy ra khi và chỉ khi:
\(6\left(m-2\right)=10\left(\dfrac{13}{5}-m\right)\Leftrightarrow m=\dfrac{19}{8}\)
\(\Rightarrow M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)
Cách 2:
Thay tọa độ A và B vào pt (d) được 2 giá trị cùng dấu âm \(\Rightarrow A;B\) nằm cùng phía so với (d)
Gọi d' là đường thẳng qua A và vuông góc với d \(\Rightarrow\) pt d' có dạng:
\(2\left(x-0\right)+1\left(y-6\right)=0\Leftrightarrow2x+y-6=0\)
Gọi C là giao điểm của d và d' \(\Rightarrow\left\{{}\begin{matrix}x-2y+2=0\\2x+y-6=0\end{matrix}\right.\)
\(\Rightarrow C\left(2;2\right)\)
Gọi D là điểm đối xứng với A qua d \(\Leftrightarrow C\) là trung điểm AD \(\Rightarrow D\left(4;-2\right)\)
Phương trình BD có dạng: \(7\left(x-2\right)+2\left(y-5\right)=0\Leftrightarrow7x+2y-24=0\)
\(MA+MB\) nhỏ nhất khi và chỉ khi M là giao điểm của BD
\(\Rightarrow\) Tọa độ M thỏa mãn: \(\left\{{}\begin{matrix}7x+2y-24=0\\x-2y+2=0\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)