K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(d): 2x-y-a=0

=>y=2x-a

b: Phương trình hoành độ giao điểm là:

\(ax^2-2x+a=0\)

\(\text{Δ}=\left(-2\right)^2-4\cdot a\cdot a=-4a^2+4\)

Để (P) cắt (d)tại hai điểm phân biệt thì \(-4a^2+4>0\)

=>a2<1

=>-1<a<1

26 tháng 4 2020

a) PT hoành dộ giao điểm d và (P):

x2-mx-m-1=0 (1). \(\Delta=\left(m+2\right)^2\)

d tiếp xúc với (P) <=> m=-2 tìm được x=-1

Tọa độ điểm A(-1;1)

b) Chỉ ra (1) luôn có nghiệm x=-1; x=m+1

Điều kiện để 2 giao điểm khác phía trục tung là:m >-1

Th1: với \(\hept{\begin{cases}x_1=-1\\x_2=m+1\end{cases}}\)tìm được m=\(\frac{-10}{3}\)(loại)

Th2: Với \(\hept{\begin{cases}x_1=m+1\\x_2=-1\end{cases}}\)tìm được m=0(tm)

7 tháng 1 2019

Ta sẽ biểu diễn lại (d)

Có (d) 2x + y - a2 = 0

=> (d) y = -2x + a2 

1, Hoành độ giao điểm của (d) và (P) là nghiệm của pt

\(-2x+a^2=ax^2\)

\(\Leftrightarrow ax^2+2x-a^2=0\)(1)

Ta có: \(\Delta'=1+a^3>0\forall a>0\)

Nên pt (1) có 2 nghiệm phân biệt

=> (d) cắt (P) tại 2 điểm phân biệt A và B

Có \(S=-\frac{2}{a}< 0\forall a>0\)

   \(P=-a< 0\forall a>0\)

=> A và B nằm bên trái trục tung

2, Theo Vi-et \(x_A+x_B=-\frac{2}{a}\)

                    \(x_A.x_B=-a\)

Khi đó: \(T=\frac{4}{x_A+x_B}+\frac{1}{x_A.x_B}\)

                 \(=\frac{4}{\frac{-2}{a}}+\frac{1}{-a}\)

                \(=-2a-\frac{1}{a}\)

                 \(=-\left(2a+\frac{1}{a}\right)\)

Áp dụng bđt Cô-si cho 2 số dương ta được

\(T=-\left(2a+\frac{1}{a}\right)\le-2\sqrt{2a.\frac{1}{a}}=-2\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow2a^2=1\)

                       \(\Leftrightarrow a^2=\frac{1}{2}\)

                       \(\Leftrightarrow a=\frac{1}{\sqrt{2}}\left(a>0\right)\)

Vậy ...........

6 tháng 5 2016

xét pt hoành độ rồi áp dụng viét đi

22 tháng 11 2018

Cắt trục hoành thì cái điểm đó tung độ sẽ bằng 0 chứ sao có thể là -2

Em sửa lại đề:

Hoặc là d2 cắt trục tung

Hoặc là hoành độ là -2