Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua O.
Dùng biểu thức tọa độ của phép đối xứng qua gốc tọa độ ta có :
M′ = (2; −3), phương trình của d′: 3x – y – 9 = 0, phương trình của đường tròn (C′): x 2 + y 2 − 2 x + 6 y + 6 = 0 .
b) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua I .
Vì I là trung điểm của MM' nên M′ = (4;1)
Vì d' song song với d nên d' có phương trình 3x – y + C = 0.
Lấy một điểm trên d, chẳng hạn N(0; 9).
Khi đó ảnh của N qua phép đối xứng qua tâm I là N′(2; −5).
Vì N' thuộc d nên ta có 3.2 − (−5) + C = 0. Từ đó suy ra C = -11.
Vậy phương trình của d' là 3x – y – 11 = 0.
Để tìm (C'), trước hết ta để ý rằng (C) là đường tròn tâm J(−1; 3),
bán kính bằng 2. Ảnh của J qua phép đối xứng qua tâm I là J′(3; 1).
Do đó (C') là đường tròn tâm J' bán kính bằng 2. Phương trình của (C') là x − 3 2 + y − 1 2 = 4 .
a) \(d_1:3x+2y+6=0\)
b) Giao của d và \(\Delta\) là \(A\left(2;0\right)\). Lấy \(B\left(0;-3\right)\) thuộc d. Ảnh của B qua phép đối xứng qua đường thẳng \(\Delta\) là \(B'\left(5;2\right)\). Khi đó d' chính là đường thẳng AB':\(2x-3y-4=0\)
Cách 1:
Lấy hai điểm A(0;2) và B (-1;-1) thuộc d. Gọi A' = (A), B' = (B)
Khi đó A' = (0;2), B' = (1;-1). Vậy d' có phương trình = hay 3x + y -2 =0
Cách 2:
Gọi M'(x', y') là ảnh của M (x;y) qua phép đối xứng trục Oy. Khi đó x' = -x và y' = y. Ta có M thuộc d ⇔ 3x-y+2 =0 ⇔ -3x' - y' + 2=0 ⇔ M' thuộc đường thẳng d' có phương trình 3x + y - 2 = 0
Cách 1:
Lấy hai điểm A(0;2) và B (-1;-1) thuộc d. Gọi A' = (A), B' = (B)
Khi đó A' = (0;2), B' = (1;-1). Vậy d' có phương trình = hay 3x + y -2 =0
Cách 2:
Gọi M'(x', y') là ảnh của M (x;y) qua phép đối xứng trục Oy. Khi đó x' = -x và y' = y. Ta có M thuộc d ⇔ 3x-y+2 =0 ⇔ -3x' - y' + 2=0 ⇔ M' thuộc đường thẳng d' có phương trình 3x + y - 2 = 0
Dễ thấy A' = {D_{o}}^{}(A) = (1;-3)
Để tìm ảnh của đường thẳng d ta có thể dùng các cách sau:
Cách 1:
Đường thẳng d đi qua B(-3;0) và C (-1;1). Do đó ảnh của d qua phép đối xứng tâm O là đường thẳng d' đi qua B' = \(D_O\) (B) = (3;0) và C' = \(D_O\) (C) = (1;-1). suy ra phương trình của d' là: \(\dfrac{x-3}{1-3}=\dfrac{y}{-1}\) hay x - 2y - 3 = 0
Cách 2:
Đường thẳng d đi qua B(-3;0), d' là ảnh của d qua phép đối xứng tâm O nên nó song song với d. Do đó d' có phương trình x- 2y +C =0, nó đi qua B' =( 3;0) là ảnh của B qua phép đối xứng tâm O/ Do đó 3+C=0. Từ đó suy ra C = -3
Vậy ảnh của d qua phép đối xứng tâm O là đường thẳng d' có phương trình x-2y-3=0
Dễ thấy A' = \({D_{o}}^{}(A) = (1;-3)\)
Để tìm ảnh của đường thẳng d ta có thể dùng các cách sau:
Cách 1:
Đường thẳng d đi qua B(-3;0) và C (-1;1). Do đó ảnh của d qua phép đối xứng tâm O là đường thẳng d' đi qua B' = DODO (B) = (3;0) và C' = DODO (C) = (1;-1). suy ra phương trình của d' là: x−31−3=y−1x−31−3=y−1 hay x - 2y - 3 = 0
Cách 2:
Đường thẳng d đi qua B(-3;0), d' là ảnh của d qua phép đối xứng tâm O nên nó song song với d. Do đó d' có phương trình x- 2y +C =0, nó đi qua B' =( 3;0) là ảnh của B qua phép đối xứng tâm O/ Do đó 3+C=0. Từ đó suy ra C = -3
Vậy ảnh của d qua phép đối xứng tâm O là đường thẳng d' có phương trình x-2y-3=0
Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên
a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0
b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :
=
hay 3x - y - 1 =0
c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0
d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình
=
hay x - 3y + 1 = 0
Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên
a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0
b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :
=
hay 3x - y - 1 =0
c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0
d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình
=
hay x - 3y + 1 = 0
a) d 1 : 3x + 2y + 6 = 0
b) Giao của d và Δ là A(2;0). Lấy B(0; −3) thuộc d. Ảnh của B qua phép đối xứng của đường thẳng Δ là B′(5;2). Khi đó d' chính là đường thẳng AB′: 2x − 3y – 4 = 0
Giao của d với trục \(Ox\) là điểm \(A\left(3;0\right)\). Phép tịnh tiến phải tìm có vectơ tịnh tiến \(\overrightarrow{v}=\overrightarrow{AO}=\left(-3;0\right)\). Đường thẳng d' song song với d đi qua gốc tọa độ nên nó có phương trình \(3x-y=0\)
Giao của d và d' với Ox lần lượt là \(A\left(-2;0\right)\) và \(A'\left(8;0\right)\). Phép đối xứng qua tâm cần tìm biến A thành A' nên tâm đối xứng của nó là \(I=\left(3;0\right)\)
Gọi M′, d′ và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua trục Ox .
Khi đó M′ = (3;5) . Để tìm ta viết biểu thức tọa độ của phép đối xứng qua trục:
Thay (1) vào phương trình của đường thẳng d ta được 3x′ − 2y′ − 6 = 0.
Từ đó suy ra phương trình của d' là 3x − 2y – 6 = 0
Thay (1) vào phương trình của (C) ta được x ' 2 + y ' 2 − 2 x ′ + 4 y ′ − 4 = 0 .
Từ đó suy ra phương trình của (C') là x − 1 2 + y − 2 2 = 9 .
Cũng có thể nhận xét (C) có tâm là I(1; −2), bán kính bằng 3,
từ đó suy ra tâm I' của (C') có tọa độ (1;2) và phương trình của (C') là x − 1 2 + y − 2 2 = 9