K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 4 2021

a.

\(R=d\left(A;d\right)=\dfrac{\left|3+1-2\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\)

Phương trình đường tròn:

\(\left(x-3\right)^2+\left(y-1\right)^2=2\)

b.

Tiếp tuyến d' qua O nên có dạng: \(ax+by=0\)

d' tiếp xúc (C) nên \(d\left(A;d'\right)=R\)

\(\Leftrightarrow\dfrac{\left|3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\Leftrightarrow\left(3a+b\right)^2=2a^2+2b^2\)

\(\Leftrightarrow7a^2+6ab-b^2=0\Rightarrow\left(a+b\right)\left(7a-b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b=0\\7a-b=0\end{matrix}\right.\) chọn \(\left[{}\begin{matrix}\left(a;b\right)=\left(1;-1\right)\\\left(a;b\right)=\left(1;7\right)\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}x-y=0\\x+7y=0\end{matrix}\right.\)

NV
22 tháng 4 2021

c.

Gọi M là trung điểm EF

\(\Rightarrow AM\perp EF\Rightarrow AM=d\left(A;d\right)=\sqrt{2}\)

\(S_{AEF}=\dfrac{1}{2}AM.EF=6\Rightarrow AM.EF=12\)

\(\Rightarrow EF=\dfrac{12}{\sqrt{2}}=6\sqrt{2}\)

\(\Rightarrow EM=\dfrac{EF}{2}=3\sqrt{2}\)

Áp dụng Pitago:

\(R'=AE=\sqrt{EM^2+AM^2}=2\sqrt{5}\)

Mn giúp em 3 bài này vs em cảm ơn! 1. Trong mặt phẳng tọa độ Oxy cho điểm A(3,1) và đường thẳng (d): x+y-2=0 a) Viết pt đường tròn (C) tâm A tiếp xúc với đường thẳng (d) b)Viết pt tiếp tuyến vs đường tròn (C) kẻ từ O(0,0) c) Tính bán kính đường tròn (C') tâm A, biết (C') cắt (d) tại 2 điểm E,F sao cho diện tích tam giác AEF= 6 2. Trong mặt phẳng tọa độ Oxy cho điểm I(1,-2) và đường thẳng (d) có pt...
Đọc tiếp

Mn giúp em 3 bài này vs em cảm ơn!

1. Trong mặt phẳng tọa độ Oxy cho điểm A(3,1) và đường thẳng (d): x+y-2=0

a) Viết pt đường tròn (C) tâm A tiếp xúc với đường thẳng (d)

b)Viết pt tiếp tuyến vs đường tròn (C) kẻ từ O(0,0)

c) Tính bán kính đường tròn (C') tâm A, biết (C') cắt (d) tại 2 điểm E,F sao cho diện tích tam giác AEF= 6

2. Trong mặt phẳng tọa độ Oxy cho điểm I(1,-2) và đường thẳng (d) có pt \(\left\{{}\begin{matrix}x=t\\y=2-t\end{matrix}\right.\)

a) Lập pt đường tròn (C) tâm I tiếp xúc vs (d). Tìm tọa độ tiếp điểm

b)Viết pt tiếp tuyến với đường tròn (C), biết tiếp tuyến đó vuông góc với đường thẳng d

3. Trong mp tọa độ Oxy, viết pt đường tròn (C) thỏa mãn:

a) (C) có bán kính AB với A(4,0); B(2,5)

b) (C) đi qua A(1,3); B(-2,5) và có tâm thuộc đường thẳng (d): 2x-y+4=0

c) (C) đi qua A(4,-2) và tiếp xúc với Oy tại B(0,-2)

d) (C) đi qua A(0,-1), B(0,5) và tiếp xúc Ox

0
31 tháng 5 2021

1.

\(\left(C\right):x^2+y^2-2x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)

Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)

Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)

Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)

\(\Leftrightarrow m=-1\pm\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)

31 tháng 5 2021

2.

Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)

\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)

\(\Leftrightarrow m=-1\pm2\sqrt{2}\)

\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

19 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

1: Gọi I(0,y) là tâm cần tìm

Theo đề, ta có: IA=IB

=>\(\left(0-3\right)^2+\left(5-y\right)^2=\left(1-0\right)^2+\left(-7-y\right)^2\)

=>y^2-10y+25+9=y^2+14y+49+1

=>-10y+34=14y+50

=>-4y=16

=>y=-4

=>I(0;-4)

=>(x-0)^2+(y+4)^2=IA^2=90

2: Gọi (d1) là đường thẳng cần tìm

Vì (d1)//(d) nên (d1): 4x+3y+c=0

Theo đề, ta có: d(I;(d1))=3 căn 10

=>\(\dfrac{\left|0\cdot4+\left(-4\right)\cdot3+c\right|}{5}=3\sqrt{10}\)

=>|c-12|=15căn 10

=>\(\left[{}\begin{matrix}c=15\sqrt{10}+12\\c=-15\sqrt{10}+12\end{matrix}\right.\)

18 tháng 4 2021

a, Đường tròn cần tìm có tâm \(I=\left(-\dfrac{1}{2};\dfrac{3}{2}\right)\), bán kính \(R=\dfrac{\sqrt{2}}{2}\)

Phương trình đường tròn: \(\left(x+\dfrac{1}{2}\right)^2+\left(y-\dfrac{3}{2}\right)^2=\dfrac{1}{2}\)

b, (C) có tâm \(I=\left(1;2\right)\), bán kính \(R=\sqrt{2}\)

Giao điểm của (C) và trục tung có tọa độ là nghiệm hệ:

\(\left\{{}\begin{matrix}x^2+y^2-2x-4y+3=0\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^2-4y+3=0\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}y=1\\x=0\end{matrix}\right.\)

\(\Rightarrow\) Giao điểm: \(M=\left(0;3\right);N=\left(0;1\right)\)

Phương trình tiếp tuyến tại M có dạng: \(\Delta_1:ax+by-3b=0\left(a^2+b^2\ne0\right)\)

Ta có: \(d\left(I;\Delta_1\right)=\dfrac{\left|a+2b-3b\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\)

\(\Leftrightarrow a^2+b^2-2ab=2a^2+2b^2\)

\(\Leftrightarrow\left(a+b\right)^2=0\)

\(\Leftrightarrow a=-b\)

\(\Rightarrow\Delta_1:x-y+3=0\)

Tương tự ta tìm được tiếp tuyến tại N: \(\Delta_2=x+y-1=0\)

28 tháng 11 2021

Tham khảo!

 

Gợi ý: Gọi H là trực tâm tam giác ABC. Dễ dàng chứng minh được AD là phân giác góc EDF.

=> BD là phân giác góc FDG.

=> FG đối xứng với nhau qua BC.

=> BG vuông góc GC

Vẽ đường GC tìm được tọa độ của C

Vẽ đường BC.

Gọi I là giao điểm của FG và BC tìm tọa độ của I có I rồi tìm được tọa độ của F có F thì vẽ được đường thẳng AB.